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Many investigators, especially in the fields of heath science and epidemiology,

have been interested in providing a causal interpretation of the statistical relation-

ships they find in the course of modeling a set of data. For quantitative variables,

path modeling has been used to provide a causal interpretation for a given system

of linear relationship. This is usually achieved by estimating and testing direct

and indirect effect of endogenous variables on subsequent variables in a causal

chain. However, the methods that are traditionally implemented are limited by

requirement of a complete causal ordering of variables.

In this dissertation, methodology is presented that extends the traditional

univariate path model in the multivariate frame work, called multivariate linear

path models. In multivariate linear path models, variables are defined as column

vectors and path coefficients are defined as matrices of coefficients. A Calculus of

Coefficients (COC) for multivariate path models is presented. That results in a

partitioning of the matrix of total effects into the sum of a matrix of direct effects

and all matrices of indirect effects through intermediate outcome vectors. The

viii



multivariate COC derived in this study extends that for the classical univariate

path model to the multivariate case, where vectors of outcome variables replace

single variables in the causal chain. A general methodology for inferences is

developed that utilize Union-Intersection of Intersection-Union tests to test single

indirect effects and bootstrap methods to testing matrices of indirect effects. The

methods are applied to data from the Western New York Health Study to describe

the effects of health behaviors such as diet, smoking, drinking, and exercise on an

index of risk factors for cardio-metabolic disease. We partition the total effects of

the health behavior variables into direct and indirect effects on a Cardio-Metabolic

Risk Index (CMRI) through anthropometric variables and through composite blood

measures that are interpreted to reflect chronic inflammation, endogenous steroid

levels, anemia, and blood viscosity.
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CHAPTER 1
INTRODUCTION

1.1 Introduction

The concept of classical path analysis (i.e. univariate, linear recursive path

models) was first introduced by Sewall Wright to the field of genetics in 1921 [54]

and was mathematically modified to include the method of path coefficients in

1934 [55]. Since then, path models were extensively utilized in the fields of genetics

(Rao 1979 [48]) and sociology (Blaolck 1964 [8], Duncan 1967 [16]) and economics

(Li 1975 [42]), and many other subject areas (Simth 1998 [22]). The main purpose

of path analysis is to describe relationships among random variables that are

assumed to be causally ordered. Such relationships can be described in a system

of equations with the random variables of interest and unknown parameters. Such

random variables are called endogenous variables. The endogenous variables are

variables whose values are explained by other variables inside of the system of

equations (Kerlinger and Padhazur [38]). These equations may also involve other

random variables, called exogenous variables, whose values are assumed to be

determined by factors outside of the causal chain.

These relationships in the system of equations are often illustrated in path

diagrams with arrows between the ordered variables representing the assumed

causal effects (Wright, [54]). In the path diagram, random variables are represented

by capital letters and observed values are represented by lower case letters. Figure

1.1 illustrates these features of path diagrams. In Figure 1.1, Y1, Y2, Y3 are causally

ordered endogenous variables and X is an exogenous variable. Each arrow indicates

the effect of one variable on another and the direction of causality. Since we have

a sequence of variables that are causally ordered, a variable has both a ”direct

1
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Figure 1–1: Path Diagram

effect (DE)” on each subsequent variable in the causal chain and/or ”indirect

effects (IE)” through the intermediate variables in the causal chain. For example,

in Figure 1.1, the arrow from Y1 to Y3 indicates Y1 has a DE on Y3. However, Y1

also may have an IE on Y3 through Y2 and this IE is represented by an arrow from

Y1 to Y2 and then an arrow from Y2 to Y3. The primary goal of recursive path

modeling is to describe relationships among random variables that are assumed

to be causally ordered. In other words, once a strict causal ordering and linear

association among random variables, say Y1, Y2, · · · , Yp, are assumed, then the

goals of path modeling are to provide a comprehensive description of relationship

by estimating and testing both direct and indirect effects. The relationships

in the causal chain can be described by a system of linear regression equations

with regression coefficients βlk, where, βlk is defined to be the direct effect of Yk

on Yl(k = 1, 2, · · · , l − 1, l = 2, 3, · · · , p). Indirect effects are defined as the
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products of direct effects along the associated indirect path through intermediate

variables. Direct effects (DE) and indirect effects (IE) are estimated by fitting

the sequence of regression equations describing the relationships. Each equation

assume linearity, normality, and the additional assumption that the equation errors

are mutually independent. Thus, the methodology for estimating and interpreting

the parameters of the system of equations follows that for usual regression models

(Duncan [16], Land [40], Li [42]). Also, it is easily shown by recursive substitution

that a “total effect (TE)“ of Yk on a subsequent variable, Yl, can be decomposed

into sums of a direct and indirect effects in the system of equations. This is known

as the Calculus of Path Coefficients (COC)(Fienberg [23]).

While conceptually appealing, path analysis has been underutilized in health

science research. Due, at least in part, to the fact that it requires a complete causal

ordering. In practice, we often encounter situations where not all of the variables

of interest can be causally ordered. As a solution for this problem, we suggest

Multivariate Linear Path Models (MVLPM), which only requires partial ordering.

That is, an ordering of sets of variables. Within each set, causal ordering is not

necessary. The goal of this dissertation is to extend the definitions of direct and

indirect effects, estimation of model parameters, and inferences for classical path

models to Multivariate Linear Path Models (MVLPM) with continuous variables.

The health science research objective that motivated our development of the

MVLPM is presented in the next section.

1.2 Motivating Example

The Western New York Health Study (WNYHS) was originally conceived

as a series of case-control studies to investigate associations of chronic disease

risks with alcohol drinking patterns. A population based cross-sectional sample of

cancer free control subjects between the ages of 35 and 79, inclusive, was randomly

selected from Erie and Niagara Counties in Western New York. State drivers
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license rolls were used as the sampling frame for individuals who were less that

65 years old. The rolls of the Health Care Financing Administration were used as

the sampling frame for those who were at least 65 years of age. Between 1996 and

2001, 6,837 potential participants were identified, contacted, and deemed eligible

on the bases of their age and cancer free status. Of those, 4,065 (59.5%) consented

to participate and were enrolled in the WNYHS. Study participants underwent

comprehensive interview, physical exam, and lab test to evaluate personal and

family medical history, cardivascular disease (CVD) and diabetes risk, and current

and lifetime health behaviors. Details of the original study design, participant

enrollment, and methodology have been described by Dorn, et al. (2003 [15]) and

Stranges, et al. (2005 [53]). Through a combination of data mining and literature

review, we have postulated causal relationships among cardiometabolic risk,

blood viscosity, microcytic anemia, serum cortisol levels, chronic inflammation,

central adiposity, health related behavior, and sociodemographics (Carter, et

al., 2007 [9]). The records of participating women who had no history of cancer,

diabetes, coronary heart disease, stroke, or other CVD were extracted from the

WNYHS data base for analysis (n=1,477). Our first goal was to develop a Cardio-

Metabolic Risk Index (CMRI) and then use it in subsequent analyses to identify

sociodemographic, behavioral, and hematology factors that affect cardiometabolic

risk. The CMRI developed was based on measures observed in the WNYHS sample

that also are included in the American Heart Association’s list of risk factors

that characterize the metabolic syndrome (MS): Atherogenic dyslipidemia (high

triglycerides, low HDL cholesterol, and high LDL cholesterol); elevated blood

pressure (systolic and diastolic); an insulin resistance or glucose intolerance (fasting

blood glucose). Abdominal obesity was measured (BMI, waist to hip ratio, and

abdominal height) but was not included in the CMRI because we wish to study

central adiposity as a presumed cause of the risk index and not as a component
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Figure 1–2: Postulated Causal Model for the Cardiomatabolic Risk Index

of it. Other blood measures listed at the American Heart Association’s web site,

http:// www.americanheart.org/presenter.jhtml?identifier=4756, not observed in

the WNYHS sample of controls and, thus, not included in our definition of the

CMRI, were fibrinogen, plasminogen activator, inhibitor1 and C-reactive protein.

Preliminary plots of the observation of serum glucose (GLUC), Triglycerides

(TRIG), HDL, LDL, Systolic Blood Pressure (SBP), and Diastolic Blood Pressure

(DBP) suggested both skewed distributions and contamination by outliers. Log

transformations of TRIG, HDL, LDL, SBP and DBP, and a log-log transformation

of GLUC appeared to be approximately normally distributed except for outliers

contamination. Contamination was likely caused by improper fasting, under



6

reporting of disease status, or technical errors in lab test results. Because of

suspected contamination in the data set, robust estimates of location parameters

and covariance matrix were obtained using the FAST-MCD algorithm of Rousseeuw

and Driessen (1999 [49]). The robust estimate of the correlation matrix was

calculated and analyzed by Principal Components Analysis (PCA). All six variables

correlated significantly with the first principal component (PC1) and in the

expected direction for PC1 to be interpreted as a CMRI.

Indices for viscosity (VSC), anemia (ANM), inflammation (INFL), cortisol

levels (CRT), and central adiposity (CAD) were defined similarly. Variables used

to form each index were selected based on a review of the literature and the

results of data mining. We chose variables that, all things considered, reasonably,

could be assumed to be correlated with the underlying construct and that were

conditionally uncorrelated given the construct. Hematocrit (HCT), hemoglobin

(HGB), red blood cell count(RBC) were used to derive blood viscosity index

(VSC). Hematocrit (HCT) is the ratio of volume of red cells to the volume of

whole blood while the red cell count is the number of red blood cells in a volume

of blood ([1]). The index for anemia (ANM) were defined using hematocrit (HCT),

hemoglobin (HGB), mean cell volume (MCV), mean cell hemoglobin (MCH).

Hemoglobin is the protein molecule in red blood cells that carries oxygen from

the lungs to the body’s tissues and returns carbon dioxide from the tissues to the

lungs. A low hemoglobin is usually referred to as being anemic. The mean cell

volume (MCV) is the average volume of a red blood cell (RBC) and is calculated

value derived from the hematocrit (HCT) and the red cell count (RBC). Mean cell

hemoglobin (MCH) is the average amount of hemoglobin in the average red cell.

The MCH is a calculated value derived from the measurement of hemoglobin and

the red cell count ([1]). Monocyte (MON), Calcium (CAL), Globulin (GLOB),

segmented neutrophil cells(SEGS), Magenesium (MAG) were were used to derive
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the cortisol index (CRT). White blood cell count (WBC), the percentage of

lymphocyte cells (LYMPH) and segmented mentrophil cells, and mean platelet

count (MPV) were used to derive inflammation index (INF). The variables used to

derive the central adiposity index (CAD) were body mass index (BMI), the ratio

of waist circumference to hip circumference (W/H Ratio), and abdominal height

(ABHT), which was measured as the height of the abdomen while the subject was

lying flat on her back and is an indicator of visceral fat. Justification for the choice

of variables in each index is given by Carter, et al (2007)[9]. The indices derived

from robust PCA are defined below:

CMRI = 0.36log(log(GLUC)) + 0.45log(TRIG) + 0.36log(LDL)

−0.13log(HDL) + 0.55log(SBP) + 0.47log(DBP) (1.1)

VSC = 0.6HCT + 0.59HGB + 0.54RBC (1.2)

ANM = 0.49HCT + 0.52HGB + 0.51MCV + 0.48MCH (1.3)

CRT = −0.29MON + 0.63CAL + 0.68GLO

+0.21SEGS + 0.067MAG (1.4)

INF = 0.31LYMPH− 0.25SEGS + 0.9WBC− 0.19MPV (1.5)

CAD = 0.62BMI + 0.46W/H Ratio + 0.64ABHT (1.6)

Fat./Cal. = −0.055LifePyrs + 0.011TothSmk + 0.028TotAdjoz

+0.05Dkpdkday + 0.035FrqDrunk + 0.57DtFat

+0.56DtSfat + 0.56DtKcal + 0.2DtFrqVegs + 0.04DtFrqFrt

(1.7)
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DNK = 0.1LifePyrs + 0.1TothSmk + 0.51TotAdjoz

+0.56Dkpdkday + 0.56FrqDrunk + 0.005DtFat

+0.02DtSfat− 0.05DtKcal− 0.17DtFrqVegs− 0.25DtFrqFrt

(1.8)

Frt./Veg = 0.18LifePyrs + 0.45TothSmk + 0.35TotAdjoz

−0.066Dkpdkday + 0.048FrqDrunk− 0.125DtFat

−0.15DtSfat + 0.038DtKcal + 0.55DtFrqVegs + 0.54DtFrqFrt

(1.9)

SMK = 0.21LifePyrs + 0.72TothSmk + 0.092TotAdjoz

−0.23Dkpdkday + 0.3FrqDrunk + 0.1DtFat

+0.09DtSfat− 0.054DtKcal− 0.18DtFrqVegs− 0.49DtFrqFrt

(1.10)

All variables used in each definition were standardized using the robust estimates

of mean vector and covariance matrix obtained from the FAST-MCD algorithm of

Rousseeuw and Driessen (1999 [49]). Our data mining results and literature review

also led to the inclusion of two dietary factors (Daily Fat/Calorie intake(Fat./Cal.)

and Daily Fruit/Vegetable intake (Frt./Veg.)), drinking and smoking factors,

and a measure of physical activity as a set of endogenous variables. Age and

education level will be considered as a set of exogenous variables in the postulated

model. Details of how indices were defined are shown the Equation above and the

definitions of health behavior variables used for these indices are as follows;

1. LifePyrs: life time total packs years

2. TothSmk: total of other smoke exposure including the second hand smoking

3. TotAdjoz: life time adjusted total onces of ethanol

4. Dkpdkday: the numbers of drinks per drinking day
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5. FrqDrunk: frequency of getting drunk in lifetime

6. DtFat: daily total grams of total fat intake

7. DtKal: daily total calories intake

8. DtFrqVeg: daily frequency of vegetable consumption

9. DtFrqFrt: daily frequency of fruits and fruits juices consumption.

More details about these definitions and how they were measured can be found

in paper by Carter, et al. [9] Once Multivariate Linear Path Model has been

established, as in Figure 1.2, we show that these definitions of direct and indirect

effects in univariate models extend to multivariate models and that a COC holds in

the multivariate framework. We investigate the total effect of 5 health behavioral

variables on a CMRI. Moreover, this total effect will be broken down into direct

effects and indirect effects by the Calculus of Coefficient(COC) extended to

Multivariate Linear Path models. In other words, the two first order indirect

effect of 5 health behavioral variables through 3 anthropometric traits (central

adiposity, cortisol, inflammation) or through 2 composite blood measures (anemia,

viscosity) , and the second order indirect effect through 3 anthropometric traits and

2 composite blood measures, and the direct effect of 5 health behavioral variables

on a CMRI can be obtained by the COC for the Multivariate Linear Path Model,

which is derived in Chapter 3 of this dissertation.

The goal of this dissertation is to extend the concepts, definitions, and key

theorem (i.e., the COC) of classical linear path analysis to problems similar to

that that illustrated in Figure 1.2, where the variables are not all causally ordered

but subsets of variables are. To address such problems, we define the MVLPM,

extend the concepts and definitions of direct and indirect effects, derive a COC for

multivariate models that generalizes the classical COC, and derive tests of indirect

effects.



CHAPTER 2
LITERATURE REVIEW AND BACKGROUND

2.1 Classical Linear Path Models

2.1.1 Models with Standardized Variables

In 1921, the geneticist Sewall Wright introduced the concept of path and

modified it mathematically in a follow up paper in 1934. Following Wright’s

conceptualization and notation path models were subsequently reintroduced in the

field of sociology (Duncan [16], Goodman [25]), and econometrics (Li, [42]). These

authors considered variables in structural linear, causal relationships and these

relationships were typically assumed to be unidirectional, i.e., a one-way causal flow

within the system of equations. For example, using standardized variables, zi, a set

of structural equation can written as follows:

zn−1 = p(n−1)nzn

zn−2 = p(n−2)(n−1)zn−1 + p(n−2)nzn

...

z2 = p23z3 + p24z4 + · · ·+ p2nzn

z1 = p12z2 + p13z3 + · · ·+ p1nzn

z0 = p01z1 + p02z2 + · · ·+ p0nzn

(2.1)

where the last endogenous variable in the causal chain denoted byz0 and pij is the

partial standardized regression coefficient between zj and zi; i = 0, 1, · · ·n − 1, j =

1, 2, · · · , n, j > i, controlling for the other z’s in Equation 2.1. The pij represent

the population path coefficient and measure the fraction of the standard deviation

10
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Figure 2–1: Path Diagram with Path Coefficients

of the dependent variable, zi, for the associated standard variable, zj. The Wright

[55] showed that the concept of indirect effects, seen as product of path coefficients,

can be justified via substitution. For example, suppose we have a system of linear

equations with four variables as follows;

z2 = p23z3 (2.2)

z1 = p12z2 + p13z3 (2.3)

z0 = p01z1 + p02z2 + p03z3 (2.4)

then, the total effect of z2 on z0, when controlling z3 can be obtained after substi-

tuting Equation 2.3 into Equation 2.4 as follows,

z0 = (p01p12 + p02)z2 + (p01p13 + p03)z3, (2.5)
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where the conditional total effect of z2 on z0 (i.e, p01p12 + p02) is the sum of the

direct effect of z2 on z0 (i.e, p02) and the indirect effect through z1 (i.e, p01p12)

,which is the product of path coefficients for z2 on z1 and for z1 on z0 respectively.

Fienberg([23], p. 120) later discussed this linear system further, stating that

”calculus of path coefficient” allows us to calculate numerical values for both direct

and indirect effect, and these, in turn, are associated with the arrows in the path

diagram. His statement lead a general rule called the ”Calculus of Coefficients”

(COC) for classical linear path models.

2.1.2 Models with Unstandardized Variables

According to Kerlinger and Pedhazur [38], the method of classical univariate

path model analysis reduces to the solution of one or more multiple regressions.

Therefore, the idea of indirect effects as the product of path coefficients is useful

to models using the original, measured variables and regression coefficients as well

as to models using standardized variables and coefficient. This idea were seen in

work by Blalock [8], Heise [32], Kerlinger and Pedhazur [38], and Stolzenberg [52].

Furthermore, Blalock [8] and Heise [32] suggested unstandardized regression

coefficients are more appropriate to fully describe ”causal laws” ([8], p. 675)

and relationships, while path coefficients are appropriate to generalize a specific

population. Duncan [16] criticized using models with only standardized variables,

stating that it would be restorative if research workers relinquished the habit of

expressing variables in standard form because standardization tends to obscure the

use of the structural coefficients of the model. Kerlinger and Pedhazur [38] agreed

with Duncan on his statement. Therefore, this research focuses on the regression

models with unstandardized variables and their coefficients.

Wright [55] and Li [42] provided methodology to calculate indirect effects by

tracing the appropriate paths in path diagrams and multiplying the associated

coefficients along those paths in the case of standardized models. The derivation
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of direct and indirect effects from recursive substitution are relatively easy to

perform for simple path models. However, in complex models, constructing the

decomposition of a total effect into direct and indirect parts along all paths

can be overwhelming. In order to deal with these complicated models, methods

using algebra were developed by Fox [24] and further discussed by Kerlinger and

Pedhazur [38].

According to Joreskog [37], univariate linear path models as a special case of

linear structural models using the system of equations as follows:

B∗Y + Γ∗X = E∗, (2.6)

where Y is a p × 1 vector of interrelated response variables, each statistically

dependent on the corresponding elements in a p × 1 vector of random errors

denoted by E∗, and E(E∗) = 0. It also assumed that B∗ is a p × p matrix of

coefficients on the variables in Y, and Γ∗ is a p × q matrix of coefficients on the

variables in X. Therefore, Equation 2.6 defines a system of p equations, the ith of

which describes an assumed linear structural relationship of the ith variable in Y,

with variables in X and the antecedent variables in Y

Equations 2.6 also can be written in a more familiar forms by moving all but

the biiYi term in the ith equation to the right hand side of that equation and then

dividing both side by bii, for each i = 1, 2, · · · , p. This yields, in the matrix form,

the simultaneous equations model as follows;

Y = BY + ΓX + E (2.7)

where B = (I− diag(1/bii)B
∗), Γ = −diag(1/bii)Γ∗, E = diag(1/bii)E

∗, diag(1/bii)

is the diagonal matrix with 1/bii in the ith diagonal position, i = 1, 2, · · · , p ,and bii

is the ith diagonal element of B∗ in Equation 2.6.
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When the elements of E in Equation 2.7 are independent and B is lower-

triangular with zeros on the diagonal (i,e., all elements on and above the main

diagonal are zero), we call it the system of recursive equations because, ignoring

errors terms, the values of the endogenous variables are determined as a function

of any antecedent set of variables by recursive substitution through the hierarchy

of intermediate equations. However, the error terms in recursive equations are

assumed to be mutually independent and this assumption yields that endogenous

variables are independent of the error terms in equations where they appear as

predictors. The recursive models are also known as classical path analysis models.

Models in which either B is not triangular or the elements of E are not mutually

independent are non− recursive.

We have shown, using recursive substitution in the case of the standardized

linear model that the COC holds. Now, for more general structural equations,

Fox’s method for calculating indirect effects and direct effects is presented. The

total effects of the exogenous variables on the endogenous variables is represented

by the matrix Tyx = (I − B)−1Γ where Ip denotes the p × p identity matrix (for

the associated derivations see Fox [24]). The matrix Tyx is called the reduced

form coefficient matrix (Johnston [36]) and contains the total effects of X on Y.

Consequently, the matrix of indirect effects is found by calculating IEyx = Tyx − Γ.

Likewise, the total effects of endogenous variables on subsequent endogenous

variables can be calculated by Tyy = (I − B)−1B and the indirect effect can be

calculated by IEyy = Tyy −B. Noting that this method involves matrix inversions

and multiplications that can be quite complex, and even more error-prone than the

path tracing and coefficients multiplications mentioned earlier.

Miller [46] reviewed the path analysis briefly as well as throughly and stated

that there is an absolute lack of literature pertaining to the appropriate use of path

analysis. As a solution of this situation, he suggested six basic assumptions for
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classical path methodology. One interesting assumption among those is “ A Change

in one variable occurs as a linear function of the change in the other variables”

([46], p. 32). Miller noted that the linearity assumption can be relaxed in some

cases by performing mathematical transformation of the nonlinear relationships.

2.2 Mathematical Background

2.2.1 Derivatives of Multi-variable Functions

We will present, subsequently, the calculus that lies beneath the well known

“Calculus of Coefficient”(COC) for path models and that which allows derivation

of a similar Calculus of Coefficients for multivariate models. First we review some

basic definitions of calculus and multidimensional calculus. We use the definitions

and notation as given of Muline [47], Khuri [39], and Johnson [35]. A quantity of

difference quotient is defined as follows:

∆yf(y) =
f(y + h)− f(y)

h
(2.8)

This quantity is defined for all functions(denoted f) and all h such that (y + h) ∈

Dy, where Dy indicates the domain of f . Let Hy denote the set of all h’s satisfying

this condition for the given y. For a continuous function, f , the derivative of the f

with respect to y is defined as

df(y)

dy
= lim

h→0
∆f(y) (2.9)

provided the limit exists at y. Note that the “∆” operator applies for either

continuous or discrete valued y variables. In addition, when Dy is discrete, ∆f(y)

with h taken to be as small as possible is analogous to the derivative operator

df(y)
dy

. Now, consider a real valued function which has more than one variable. In

other words, let f(y) be a multi-variable function defined on a set D ⊂ Rp , where

y = (y1, y2, · · · , yp)
′ and the yi, i = 1, 2, · · · , p, are arguments of f . Then the partial

derivative of the multi-variable function f with respect to yi denoted ∂f
∂yi

, is defined
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to be

∂f(y)

∂yi

= lim
hi→0

∆yi
f(y) (2.10)

where

∆yi
f(y) =

f(y1, y2, · · · , yi + hi, · · · , yp)− f(y1, y2, · · · , yi, · · · , yp)

hi

(2.11)

provided that the limit exists. Thus, the partial derivative of the multi-variable

function f with respect to yi is defined in the same way as the derivative of

univariate function except we are holding all the remaining variables as constants.

Note that if the yi’s are discrete then the partial difference quotient is defined

by taking hi ∈ Hyi
, i = 1, 2, · · · , p. It should be noted that derivatives and

partial derivatives apply only for functions of continuous variables, while difference

quotients and partial difference quotients are used generally.

However, if we have a vector valued multi-variable function denoted by f such

that f : D → Rm where f = (f1, f2, · · · , fm)′ then the partial derivative of fj with

respect to yi, denoted by
∂fj(y)

∂yi
, for i = 1, 2, · · · , p; j = 1, 2, · · · ,m, is the (j, i)th

element of m × p matrix called the Jacobian matrix (named after Carl Gustav

Jacobi, 1804 1851) of f at y and denoted by Jf (y)(Khuri [39]). In general, we

define a Jacobian of a vector valued function of a vector of variables defined as

follows:
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Jf (y) =



∂f1
∂y′

∂f2
∂y′

...

∂fm
∂y′



=



df1

dy1

df1

dy2

df1

dy3
· · · df1

dyp

df2

dy1

df2

dy2

df2

dy3
· · · df2

dyp

...
...

...
...

...

dfm

dy1

dfm

dy2

dfm

dy3
· · · dfm

dyp


(2.12)

provided that f is a vector valued function such as f : D → Rm where D ⊂ Rp

and the partial derivatives,
∂fj

∂yi
, exist at an interior point y′ = ((y1, y2, · · · , yp)

′ in D

for i = 1, 2, · · · , p; j = 1, 2, · · · ,m, where fj is the jth element of f . Note that this

Jacobian matrix will be used to derive COC for multivariate path models.

2.2.2 Derivatives Of Vector Valued Multi-variable Compound Functions

First, we discuss derivatives of a composite function of single variable. Such

a derivative can be obtained by applying Chain-Rule (CR). According to the

notation given in Anton [3], Stewart [51], and Johnson [35], if u = f(y1) and

y1 = g(t) , where f and g are both differentiable functions, then u is an indirectly

differentiable function of t and, by the CR, we have

du

dt
=

du

dy1

dy1

dt

The Chain Rule(CR) extends to multivariate functions. If, for example, u is

a differentiable and multi-variable function of y1 and y2, say u = f(y1, y2),

y1 = g(t), y2 = h(t) and g and h are both differentiable functions of t, then u is a

differentiable function of t and, by the Multivariable Chain Rule(MVCR), we have

du

dt
=

∂u

∂y1

∂y1

∂t
+
∂u

∂y2

∂y2

∂t
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Generally, the MVCR is applied in the case where u is differentiable and a multi-

variable compound function of p variables, y1, y2, · · · , yp, where each yi is a

differentiable function of single variable, t. We have the following Chain Rule for

the multi-variable compound function u = f(y1(t), y2(t), · · · , yp(t)):

du

dt
=

∂u

∂y1

dy1

dt
+
∂u

∂y2

dy2

dt
+ · · ·+ ∂u

∂yp

dyp

dt

=

p∑
i=1

∂f(y)

∂yi

dyi

dt

Secondly, consider the more general case. We follow most of the notation from

Khuri [39]. Suppose we have a vector valued multi-variable function such that

f : D1 → Rm, where f = (f1, f2, · · · , fm) and D1 ⊂ Rq and further suppose we

have another vector valued multi-variable function, g such that g : D2 → Rp where

g = (g1, g2, · · · , gp)
′ and D2 ⊂ Rm. Let y0 and f(y0) be an interior point of D1

and D2, respectively. Then the p × q Jacobian matrix for the composite function

h = g ◦ f ,denoted by Jh(y0), exists and is given by

Jh(y0) = Jg[f(y0)]Jf (y0), (2.13)

provided that the m × q Jacobian matrix Jf (y0) and the p × m Jacobian matrix

Jg[f(y0)] both exist. The Equation 2.13 can be derived by applying the MVCR ,

element by element, to a vector valued compound function. The (k, r)th element of

Jh(y0), denoted by ∂hk(y0)/∂yr is obtained from Equation 2.13 as

∂hk(y0)

∂yr

=
m∑

j=1

∂gk[f(y0)]

∂fj

∂fj(y0)

∂yr

(2.14)

where hk = gk[f(y0)] is the kth element of h(y0) = g[f(y0)], r = 1, 2, · · · , q and

k = 1, 2, · · · , p. However, ∂gk[f(y0)]/∂fj is the (k, j) th element of Jg[f(y0)], and

∂fj(y0)/∂yr is the (j, r)th element of Jf (y0), i = 1, 2, · · · , n; j = 1, 2, · · · ,m; and

k = 1, 2, · · · , p. Hence, by the rule of matrix multiplication, Equation 2.13 follows.
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2.2.3 Derivatives of Multiply Nested Vector Valued Compound Functions

Now, we consider the case where we have more than one layer of nesting in a

vector valued compound function. Suppose we have a vector valued function f such

that f : D1 → Rm1 where D1 ⊂ Rq and suppose we have another vector valued

function w such that w : D1 → Rm2 . Let y0 be a q × 1 vector in D1 and f(y0)

be a m1 × 1 vector in Rm1 and w(y0) be a m2 × 1 vector in Rm2 . We assume that

the m1 × q Jacobian matrix of f with respect to y evaluated at y0, and denoted

by Jf (y0), exists and the m2 × p Jacobian matrix of w with respect to y evaluated

at y0, and denoted by Jw(y0), exists. We want to find the Jacobian matrix of h

with respect to y evaluated at y0 denoted by Jh(y0), for the compound function

h = g ◦ (f ,w), given g : D2 → Rp, where D2 ⊂ Rm1+m2 . Consider the (k, r)th

element of Jh(y0) denoted as ∂hk(y0)/∂yr, where hk = gk[f(y0),w(y0)], where

r = 1, 2, · · · , q; k = 1, 2, · · · , p. By applying Multi-variable Chain Rule we have

∂hk(y0)

∂yr

=

m1∑
i=1

∂gk[f(y0),w(y0)]

∂fi

∂fi(y0)

∂yr

+

m2∑
j=1

∂gk[f(y0),w(y0)]

∂wj

∂wj(y0)

∂yr

(2.15)

However, ∂gk[f(y0),w(y0]/∂fi is the (k, i) th element of Jg[f(y0)] and ∂fi(y0)/∂yr

is the (i, r)th element of Jf(y0) . So, the first sum in Equation 2.15 constitutes

the (k, r)thelement of Jg[f(y0)]Jf (y0) by the rule of matrix multiplication,

where r = 1, 2, · · · , q; i = 1, 2, · · · ,m1; k = 1, 2, · · · , p. Likewise, the second

sum in Equation 2.15 composes the (k, r)thelement of Jg[w(y0)]Jw(y0) since

∂gk[f(y0),w(y0]/∂wj is the (k, j) th element of Jg[w(y0)] and ∂wj(y0)/∂yr is

the (j, r)th element of Jw(y0), r = 1, 2, · · · , q; j = 1, 2, · · · ,m2; k = 1, 2, · · · , p.

Therefore, Equation 2.15 represent

Jh(y0) = Jg[f(y0)]Jf (y0) + Jg[w(y0)]Jw(y0) (2.16)
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where Jg[f(y0)] represents Jocobian of g with respect to f evaluate at y0 and

Jg[w(y0)] represents the Jacobian of g with respect to w evaluated at y0. Finally,

we can generalize to the case where we have q vectors valued nested function.

Lemma 2.2.1. Let fi : D1 → Rmi, where D1 ⊂ Rc and let g : D2 → Rp, where

D2 ⊂ R
P

mi , i = 1, 2, ..., q. Let y0 be a c × 1 vector in D1 and fi(y0) be a mi × 1

vector in Rmi. If the mi × c Jacobian matrix denoted Jfi(y0) and p ×mi Jacobian

matrix Jg[fi(y0)] both exist, then p × c Jacobian matrix Jh(y0) for the composite

vector valued function h = g ◦ F exists and is given by

Jh(y0) =

q∑
i=1

Jg[fi(y0)]Jfi
(y0) (2.17)

, where F = (f ′1, f
′
2, · · · , f ′q)′, f ′i=(fi1, fi2, · · · , fimi

)′ , and h′ = (h1, h2, · · · , hp)
′.

Proof. In order to prove Equation 2.17, let us consider the (k, r)th element

of Jh(y0) denoted as ∂hk(y0)/∂yr, where hk = gk(F(y)) is the kth element

of h(y) = g(F(y)), where F = (f ′1, f
′
2, · · · , f ′q)′, f ′i=(fi1, fi2, · · · , fimi

)′ ;i =

1, 2, · · · , q; r = 1, 2, · · · , c; k = 1, 2, · · · , p. By applying Multi-variable Chain Rule

we obtain

∂hk(y0)

∂yr

=

q∑
i=1

mi∑
j=1

∂gk[F(y0)]

∂fij

∂fij(y0)

∂yr

(2.18)

where r = 1, 2, · · · , c; k = 1, 2, · · · , p; j = 1, 2, · · · ,mi; i = 1, 2, · · · , q and

fij(y0) is the jth element of fi(y0). However, ∂gk[fi(y0)]/∂fij is the (k, j)th ele-

ment of Jacobian of g with respect to f evaluated at y0 denoted by Jg[fi(y0)],

and ∂fij(y0)/∂yr is the (j, r)th is element of Jacobian of fi with respect to y

evaluated at y0 denoted by Jfi(y0). Thus, by the rule of matrix multiplication∑mi

j=1 ∂gk[fi(y0)]/∂fij × ∂fij(y0)/∂yr is (k, r)th element of Jg[fi(y0)]Jfi(y0), which is

the p × c matrix representing the Jacobian of the compound function with respect

to jth nested and vector valued multi-variable function of (y) evaluated at y0.
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Therefore,

Jh(y0) =

q∑
i=1

Jg[fi(y0)]Jfi
(y0) (2.19)

Note that within Equation 2.19 above, the MVCR may be applied repeatedly

to evaluate
∂fij

∂yr
where yr is another differentiable and multi- variable compound

function of , say, x1, x2, · · · , xl, where each xu, u = 1, 2, · · · , l is a function of t.

Lemma 2.2.2. Derivatives of a multiply nested vector valued compound function.

Let fi : Di−1 → Rpi, where Di−1 ⊂ Rp(i−1) and let fk : D0 → Dk, where

D0 ⊂ R
Pj

k−1 pj . Suppose y0 is an interior point of D0 and let fi(fi−1(y0)) be an

interior point of Di. If the pi × (pi−1) Jacobian denoted Jfi(f
c
i−1(y0)) and the pk × q

Jacobian denoted Jfk(y0) both exist, then the pl × q Jacobian matrix Jh(y0) exists

and is given by

Jh(y0) = Jfl [f
c
l−1(y0)]Jfl−1

[f c
l−2(y0)] · · ·Jfk+1

[fk(y0)]Jfk(y0) (2.20)

where h(y0) = fl◦fl−1◦· · ·◦fk+1◦fk(y0) and f c
i−1(y0) = fi−1◦fi−2◦· · ·◦fk+1◦fk(y0), i =

k + 2, k + 3, · · · , l.

Proof. This result can be easily obtained by applying Equation 2.13 recursively

through each layer of nesting as follows.

Jh(y0) = Jfl [f
c
l−1(y0)]Jfc

l−1
(y0)

Jfc
l−1

(y0) = Jfl−1
[f c

l−2(y0)]Jfc
l−2

(y0)

... =
...

Jfc
k+3

(y0) = Jfk+3
[f c

k+2(y0)]Jfc
k+2

(y0)

Jfc
k+2

(y0) = Jfk+2
[fk+1(y0)]Jfk+1

(y0)

Jfk+1
(y0) = Jfk+1

[fk(y0)]Jfk(y0) (2.21)
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Here, we show that the derivative of a multi-nested vector valued compound

function is the product of Jacobians of each layers of the nested function evaluated

at y0.

Note that Lemma 2.2.1 and Lemma 2.2.2 will be used in this dissertation

to derive a chain rule for the type of multiply nested compound function from

recursive substitution to obtain fl as a function of Yk and its antecedent only.

2.3 Bootstrap method

2.3.1 Introduction

The bootstrap was introduced by Efron (1979 [17]) motivated by the following

two problems; the determination of an estimator for a particular parameter of

interest and the evaluation of the accuracy of that estimator through estimates

of standard error or the estimator and determination of confidence intervals.

With general developments given in Efron (1981 [20] [19]), Efron and Tibshirani

(1993 [21], and Hall (1992 [29]), the bootstrap has been applied to a wide class

of problems such as regression, discriminant analysis, or error rate estimation,

etc. Since bootstrap method was applied to the general inference in our suggested

model later (e.g., estimation of standard error or construction of confidence

intervals) we provide a general overview of the bootstrap in this section. Note that

we only focus on nonparametric bootstrap at this section.

2.3.2 Key Ideas

According to Davison [14], there is two ideas that make the bootstrap a

highly flexible tool for inference. One was called “ The plug-in principal”. The

plug-in principal is recognition of the fact that inference involves the replacement

of an unknown probability distribution F by an estimate an F̂ , where F̂ represent

empirical probability distribution function. Thus the plug-in estimates of a

parameter θ = t(F ) is defined to be θ̂ = t(F̂ ). For example, suppose θ = t(F̂ ) =
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EF (x) then the plug-in estimates of θ is

θ̂ = EF̂ (x) =
1

n

n∑
i=1

xi (2.22)

where we have observed random sample of size n, x = (x1, x2, · · · , xn) from

a probability distribution F . This is nonparametric estimates of θ since the

empirical distribution, F̂ , is nonparametric estimates of F while a parametric

model F (y;ψ) with parameter ψ of fixed dimension is replaced by its maximum

likelihood estimates, F̃ (y;ψ). The choice between parametric and nonparametric

estimates depends on setting. Semiparametric estimates are also in common use,

for example regression models. Efron [21] stated that the plug-in principal usually

works well in situations where the only available information about F comes from

the sample x. He also added that the plug-in principal is less good if there is

information about F other than that provided by the sample x. For example, we

might know or assume that F is a member of a parametric family such as the

family of multivariate normal distributions.

An idea is to replace analytical calculation of properties of an estimator θ̂ of

an unknown parameter θ = t(F ) by simulation from F̂ . This gives the familiar

generation of B replicate bootstrap samples y∗1, y
∗
2, · · · , y∗n and the use of the

corresponding estimates θ̂∗1, θ̂
∗
2, · · · , θ̂∗B to estimate repeated sample properties of θ̂.

These two simple yet powerful ideas make the bootstrap an applicable tool

for inference in various situation such as estimating variance of nonlinear function

of parameters or constructing confidence intervals for nonlinear functions of

parameters, etc.

2.3.3 Estimation of Standard Errors

The bootstrap algorithm works by drawing many independent bootstrap

samples, evaluating the corresponding bootstrap replications, and estimating

the standard error of θ̂ by the empirical standard deviation of the replicated
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estimates. The result is called the bootstrap estimate of standard error, denoted by

ˆSeB, where B is the number of bootstrap samples used. According to Efron and

Tibshirani [21], the bootstrap algorithm for estimating standard errors as follows;

1. Select B independent bootstrap samples x∗
1
,x∗

2
, · · · ,x∗B

, each consisting

of n data values drawn with replacement from x. (The number B will be

ordinarily in the rage of 25 - 200 for estimating a standard error).

2. Evaluate the bootstrap replication corresponding to each bootstrap sample,

θ̂∗(b) = s(x∗
b

), b = 1, 2, · · · , B. (2.23)

The quantity s(x∗
b
) is the result of applying the same function s(·) to x∗.

For example if s(x∗
b
) is the sample mean x̄ then s(x∗

b
) is the mean of the

bootstrap data set, x̄ =
∑n

i=1 x
∗
i /n.

3. Estimate the standard error se∗F by the sample standard deviation of the B

replications

ˆSeB =

∑B
b=1[θ̂

∗(b)− θ̂∗(·)]
B − 1

1/2

(2.24)

where θ̂∗(·) =
∑B

b=1 θ
∗(b)/B

It is generally known that in many cases, the bootstrap provides a reasonable

estimator that is consistent. The quantity in Equation 2.24 is a Monte Carlo

approximation of Senn , where Senn represent the quantity using all possible

distinctive bootstrap samples (nn represent number of bootstrap samples,in

practice, it is very computationally challenging. So we approximate Senn using

reasonable number of bootstrap samples, B)) and it can be shown that, by Law of

Large Numbers, ˆSeB converge to ˆSenn as B → ∞ [41]. Then, Senn converge to

SeF̂ as n→∞. This is where bootstrap consistency is established. (see Casella and

Berger [10] and Shao and Tu [50]).
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2.3.4 Confidence Intervals

In this subsection, we presents the various bootstrap confidence intervals

and compare them. Before introducing them, we present Hartigan’s typical value

theorem which is the motivation for percentile method.

Typical Value Theorems for M-Estimates

Chernick ( [11], p.51) stated that the typical value theorem of Hartigan

(1969 [30]) tells us that subsampling methods (e.g., random sampling) can provide

confidence intervals that are exact (i.e., have confidence coefficient 1 − α for finite

sample size) if we only assume that the population distribution is symmetric.

First we present these subsampling methods and then we present the typical value

theorem.

Consider any set A and let pθ(A) denote the probability that a random

variable X with distribution Fθ has its value in the set A. As in Efron [18] we will

assume that Fθ has a symmetric density function f(·) so that

Pθ(A) =

∫
A

f(x− θ)dx (2.25)

where ∫
f(x)dx = 1, f(x) ≥ 0, and f(−x) = f(x) (2.26)

An M-estimate θ̂(x1, x2, · · · , xn) for θ is any solution to the equation

∑
i

Ψ(xi − θ) = 0 (2.27)

where the observed data Xi = xi, (i = 1, 2, · · · , n) are fixed and θ is the variable to

solve for. The function Ψ is called the kernel, and Ψ is assumed to be antisymmet-

ric and monotonically increasing (i.e., Ψ(-z)=-Ψ(z) and Ψ(z+h)¿Ψ(z)). Examples

of M-estimates are the sample mean and the sample median. For examples of

M-estimates are given in Efron ( [18]).
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Suppose we have the set of integer (1, 2, 3, · · · , n). Then, the number of non-

empty subsets of this set is 2n − 1. Let S be any one of these nonempty subsets.

Let θ̂s denotes an M-estimate based on only those values xi for i belonging to S.

Then, under our assumptions about Ψ, different choices of S will give different

M-estimates. Now let I1, I2, · · · , I2n denote the following partition of the real line :

I1 = [−∞, a1), I2 = [a1, a2), I3 = [a2, a3), · · · , I2n−1 = [a2n−2, a2n−1) (2.28)

and

I2n = [a2n−1,+∞) (2.29)

where a1 is the smallest θ̂s, a2 is the second smallest θ̂s, and so on. Based on this

notations and definitions above, now we state the first typical value theorem.

Theorem 2.3.1. The Typical Value Theorem (Hartigan, 1969). The true value

of θ has probability 1/2n of being in the interval Ii for i = 1, 2, · · · , 2n, where Ii is

defined as above.

Now we define the procedure called random sampling. Let s1, S2, · · · , SB−1 be

B − 1 of the 2n − 1 nonempty subsets of {1, 2, 3, · · · , n} selected at random without

replacement and and let I1, I2, · · · , IB be the partition of the real line obtained by

ordering the corresponding θ̂S values. Then, we have the following corollary to the

Typical Value Theorem.

Corollary 2.3.1. The true value of θ has probability 1/B of being in the interval,

Ii for i = 1, 2, · · · , B, where Ii is defined as above.

This corollary provides the probability that each interval contains θ in a

random sampling (sampling without replacement) procedure. In other words, we

can construct an exact 100(j/B) percent confidence region for 1 ≤ j ≤ B − 1, by

simply combining any j of the intervals since probability of θ being in each interval

has uniform distribution[0, 2n] . This is the idea motivate the bootstrap percentile

intervals, which is presented in next section.
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Efron’s Percentile Intervals

The percentile interval is the most natural way to construct a confidence

interval for a parameter based on bootstrap estimates.

Suppose that θ̂∗i is the ith bootstrap estimate from the ith bootstrap sample

of size n. We can use the sample analogy as the case of random subsampling.

Suppose we ordered θ̂∗i from smallest to largest. Then we would expect that the

interval containing 90% of the θ̂∗i values would a 90% confidence interval for θ.

A bootstrap interval generated in this way is called a a percentile interval. This

would be an exact interval if the typical value theorem applied to bootstrap sample

estimates just as it is applied to random subsample estimates. However, as the

sample becomes large (n → ∞), the difference in the distribution of the bootstrap

estimates and the subsampling estimates becomes small. Thus, we expect the

bootstrap percentil intervals to be almost the same as the random subsampling

intervals. Consequently, the bootstrap percentile intervals inherit the exactness

property of the subsampling intervals asymptotically (i.e., n → ∞). However,

we should remind that there are two condtions for Hartigan’s theorem to apply:

the distribution has to be symmetric and an estimator has to be an M-estiamtor.

Therefore, in the case of small samples, especially for asymmetric distributions,

the percentile method does not work well. There are modification to overcome

these difficulities, such as iterated bootstrap or BCa intervals (Bias Corrected

and accelerated intervals) or ABC intervals (Approxomate Bootstrap Confidence

intervals). More details about these other methods are shown in Hall (1988 [28])

and in Efron and Tibshirani(1993 [21]), respectively.

Bootstrap-t Confidence Interval

The bootstrap-t method is simple method to program and appears to

overcome some of the shortcomings of Efron’s percentile method without the

computational complexity of methods such as bias correction and acceleration
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constant.(Chernick [11].) This technique was first introduced by Efron as the boot-

strap (1982, [18]). Later, Hall developed asymptotic formulas for the convergence

error of the bootstrap-t method. Efron and Tibshirani state that it is relatively

simple yet, has better accuracy than the percentile method ( [21], pp.322-325).

The bootstrap t procedure is based on the construction of Studentized pivots

and estimates the distribution of Z directly from the data. Then it builds a

bootstrap-t table of critical value like the standard normal tables. This table is

used to construct a confidence interval in exactly the same say that the normal

and t tables are used. The bootstrap-t table is built by generating B bootstrap

samples, and then computing the bootstrap version of Z for each. The details of

the bootstrap-t method are presented as follows:

1. Generate B independent bootstrap samples x∗
1
,x∗

2
, · · · ,x∗B

, each consisting

of n data values drawn with replacement from x. For each we compute

Z∗(b) =
θ̂∗(b)− θ̂

ˆse∗(b)
(2.30)

where θ̂∗(b) is the value of θ̂ for the bootstrap sample x∗
b

and ˆse∗(b) is the

estimated standard error of θ̂∗(b) from secondly bootstrap (double bootstrap)

resampling distribution of x∗
b

.

2. Estimate the α percentile of Z∗(b) denoted by ˆt(α) as follows:

#{Z∗(b) ≤ ˆt(α)}/B = α (2.31)

For example, if B = 1000, the estimate of the 5% point in the 50th smallest

value of the Z∗(b)s and the estimate of the 95% point is the 950th smallest

value of the Z∗(b)s.

3. Finally, construct the bootstrap-t confidence interval as follows;

(θ̂ − ˆt(1−α) · ŝe , θ̂ − ˆt(α) · ŝe) (2.32)
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where ŝe denote estimated standard error of θ from the original data.

The bootstrap-t confidence intervals for θ are second-order accurate, that is,

the probability that a one-side interval with nominal level 1 − α contains θ is

1 − α + O(n−1)(i.e.,Prob(θ ≤ θ̂[1 − α]) = 1 − α + O(n−1)) while standard normal

and Student’s t intervals are first order accurate but not second order accurate

unless the true distribution is normal [29]. Although the bootstrap-t and BCa

procedure produces second order accurate confidence intervals, a major drawback of

the bootstrap-t method is that it is not transformation-respecting. In other words,

it can work poorly if it is applied on the wrong scale. But it generally works well

for location statistics such as sample mean, the median or the sample percentile.

In Chapter 4, We will apply the bootstrap-t method for constructing confidence

intervals of indirect effects, which are nonlinear functions of path coefficients.

We choose the bootstrap-t method because indirect effects are nonlinear and

monotonically increasing function of conditional sample mean. Thus, it is rare to

have problems related to the transformation or scale. Also, the bootstrap-t method

is computationally more simple to the suggested model than others such as BCa or

ABC intervals.

2.3.5 Hypothesis Tests

Davison (2003, [14]) gave a brief review on bootstrap hypothesis tests. The

following is summary of his review. The key elements of a hypothesis test are

a null hypothesis H0 which imposes constraints on the data distribution. The

degree of disagreement between the data and H0 is measured by the P -value,

pobs = Prob(T ≥ tobs) given H0, where T is a test statistics and tobs is the value

of T actually observed, and the probability is calculated under a null hypothesis

distribution. Bootstrap estimation of pobs involves computation under the null

hypothesis distribution, usually by simulation from an estimate F0 that satisfies

H0. In many comparative test settings the resulting bootstrap tests are almost
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equivalent to permutation tests, the essential difference being use of sampling with

and without replacement.

However, a simulation from a specially constructed null distribution is not

needed if the test is based on a pivot, because the distribution of pivotal test

statistics does not depend on the parameters. For example, suppose we have

H0 = θ0 and that (θ̂ − θ)/V 1/2 is the basis of the test. Under the null hypothesis,

tobs = (θ̂obs − θ0)/V̂
1/2
obs is the observed value of a random variable that has a

distribution approximated by that of (θ̂∗ − θ̂)/V ∗1/2 obtained by simulation

from either F0 or F̂ , because of its pivotality. Thus, simulation from a specially

constructed null distribution is not needed if the test statistic is pivotal. Due to

this fact, there is equivalence between the one sample bootstrap hypothesis test and

the bootstrap-t confidence interval as there is equivalence between the one sample

hypothesis test and one sample t confidence intervals. It should also be addressed

here that the choice of test statistics, that is pivotal or at least asymptotically

pivotal, relates to accuracy of the test. Fisher and Hall point out that tests based

on pivotal statistics often results in significant levels that differ from the advertised

level by O(n−2) as compared to O(n−1) for tests based on nonpivotal statistics.

We also adopt bootstrap-t hypothesis tests for general inferences of our suggested

model in Chapter 4.

2.3.6 The Bootstrap Confidence Region

Since our suggested model is set in a multivariate frame work, it involves both

confidence intervals and confidence regions. We provided a general overview about

the bootstrap-t interval and the corresponding bootstrap-t hypothesis testing in

previous two sections. We present overview about the bootstrap confidence region

in this section.

One of the most common methods for constructing bootstrap confidence

regions for the mean direction of a random p-dimensional unit vector is based on
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likelihood of pivotal statistics or asymptotically pivotal statistics. This method is

called likelihood-base on regions and is based on the same principal as one used in

the univariate bootstrap method. Hall [26] discussed the method for constructing

likelihood-based confidence regions for a vector-valued parameter using a percentile-

t method. He discussed the advantage of percentile-t over the ordinary percentile

method where percentile-t involves standardization of the parameter estimate by

a variance estimate computed for each individual bootstrap resamples while the

ordinary percentile method standardized by the variance estimate calculated for

the original sample on which all the resamples were based. In his paper [26], he

showed that the percentil-t method gives a likelihood-based region whose boundary

is close to that of the ideal region than the boundary of a likelihood-based regions

constructed using the ordinary percentile method. More precisely, he showed that

percentile-t method results in second-order-correct boundaries Ø(1/n) while the

ordinary percentile method does not.

In principal, likelihood-based confidence regions are constructed as follows. Let

Θ̂ be an estimate of an unknown parameter vector Θ, based on a sample, called `,

of size n and let V̂ be an estimate of V , where V denote the asymptotic variance

matrix of n1/2(Θ̂ − Θ), assumed positive-definite. Let Rα be an α-level confidence

region for Θ if Prob(Θ ∈ Rα) = α. Suppose the density f of the distribution of

Y = n1/2V̂ −1/2(Θ̂ − Θ) is known. Then, we may construct a set ωα which is of

smallest content such that Porb(Y ∈ ωα) = α. Then

Ra = Θ̂− n−1/2V̂ 1/2ωa = {Θ− n−1/2V̂ 1/2x : x ∈ ωa} (2.33)

The region Rα is likelihood-based if all parameter values inside Rα have higher

likelihood than those outside [12]. The ordinary percentile method and the

bootstrap-t method implement approximations of the unconditional distribution of

n1/2V̂ −1/2(Θ̂−Θ) with n1/2V̂ −1/2(Θ̂∗ − Θ̂) and n1/2V̂ ∗−1/2(Θ̂∗ − Θ̂), respectively.
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The multivariate percentile method has the following form according to

Wu [56] and Hall [26]. Construct a confidence region Ra which is such that

Prob(Θ̂∗ ∈ R̂α|`) = α (2.34)

Then Ra is a bootstrap confidence region and has nominal converge α. The

circumflex on R̂a serves to distinguish that region from the theoretical confidence

regions Ra Now,

Prob(Θ̂∗ ∈ R̂α|`) = Prob{n1/2V̂ −1/2(Θ̂∗ − Θ̂) ∈ (n1/2V̂ −1/2(R̂alpha − Θ̂)|`)}, (2.35)

where n1/2V̂ −1/2(R̂α − Θ̂) ≡ {n1/2V̂ −1/2(x − Θ̂) : x ∈ R̂α}. Thus, the ordinary

percentile-method constructs a confidence region which is

R̂α ≡ Θ̂ + n1/2V̂ 1/2ω̂α = {Θ̂ + n−1/2V̂ 1/2x : x ∈ ω̂α}, (2.36)

where the set ω̂α is chosen so that

Prob{(n1/2V̂ −1/2(Θ̂∗ − Θ̂)) ∈ ω̂α|`} = α. (2.37)

However, according to Hall [26], one of major drawback of the ordinary percentile

method is that the boundary of the smallest content subject in the confidence

region is differs from that of the ideal region by terms of order n−1. He also show

that the percentile-t results in the second-order-correct boundaries, whereas

the ordinary percentile. method does not. According to Hall, the multivariate

percentile-t method has the following form where the confidence regions based on

the percentile-t method are defined as

R̂0
a ≡ Θ̂ + n1/2V̂1/2ω̂a = {Θ̂ + n−1/2V̂ 1/2x : x ∈ ω̂0

a}, (2.38)

where ω̂0
a is chosen so that

Prob{(V̂ ∗−1/2(Θ̂∗ − Θ̂)) ∈ ω̂0
a|`} = α. (2.39)
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where V̂ ∗−1/2 denote the bootstrap variance estimates in each individual bootstrap

resamples. However, the bootstrap-based (both the ordinary percentile method

and the percentile-t method) approximations to exact regions have converge α +

Ø(1/n)Rα. More details of using pivotal statistics when using the bootstrap for

Euclidean-data were found in Hinkley and Wei [33], Hartigan [31], Beran [7], and

Hall ( [26], [27]). Later, we apply both the ordinary percentile method and the

bootstrap-t method to construct the confidence regions of matrices or vectors of

indirect effects in the MVLPM.

The other common method of constructing bootstrap confidence regions

is based on data depth, which is a non parametric approach. Data depth is a

geometrical concept of ordering multidimensional data from the center outward.

The Mahalanobis depth (1936, [45]) is a well known measure of data depth that

is computationally simple. The definition of the Mahalanobis depth is given as

follows [44];

Definition.2.3.6 Mahalanobis depth (MhD)(Mahalanobis 1936)

Given observations W1,W1, · · · ,Wm from the distributions Ψ in <k, of given

point ω ∈ <k with respect to Ψ is defined to be

MhD(Ψ;ω) = [1 + [ω − µΨ]T Σ−1
Ψ [ω − µΨ]}]−1 (2.40)

where µΨ and ΣΨ are mean and variance matrix of Ψ. The sample version of

MhD is obtained by replacing µΨ and ΣΨ by their sample counterparts. Thus, the

larger the value MhD, the deeper (or more central) the ω with respect to Ψ. We

can apply this data depth to numerous bootstrap estimates of parameter, Θ∗
n’s to

determine the relative outlyingness of estimates with respect to the hypothesized

value Θ0. In this case, Ψ would be the bootstrap resampling distribution (the

sampling distribution of Θ∗) and Σ−1
Ψ would be bootstrap variance estimates from

the bootstrap resampling distribution.
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Tukey’s depth is another method to compute data depth and is known to be

the most attractive among all the competitors according to Zuo and Serfling [59].

However, since an algorithm for computing Tukey’s depth is not available for Rp,

p > 2, it is not considered in this dissertation. More details of Tukey’s depth and

its application is found in Yeh [57] and general properties of other data depths

were provided in Liu and Singh (1993 [43]). However, an algorithm for computing

the Tukey’s depth for Rp, p > 2 is too intensive for this dissertation and it is

not considered here. More details of Tukey’s depth and its application is found

in Yeh [57] and general properties of other data depths were provided by Liu and

Singh (1993 [43]). By deleting the α most exterior points in the empirical bootstrap

distribution using these measure of data depth, we can obtain bootstrap confidence

regions. Application of this method can be found in paper such as those by Yeh

(1997 [57]) or Battista (2004 [5]).

2.3.7 Limiting P values

In this section, we introduce the definition of limiting P values (LP ′s) based

on data depth and their application to the bootstrap method introduced by Liu

and Singh (1997 [44]). They proposed a new notion of limiting P values (LP ′s),

using nonparametric bootstrap and data depth for hypothesis testing of parameters

that have finite or infinite dimensions. The limiting P-value (LP ) provides the

usual interpretation of a P value as the strength in support of the null hypothesis

coming from the observed data. The general definition of limiting p values (LP ′s)

is follows.

Definition 2.3.7.1 Limiting P values

Let X1, X2 · · · , Xn, possibly multivariate, denote a random sampling from a

population with cdf F . Consider testing H : F ∈ Ω1 versus K : F ∈ Ω2. Let pn be a

statistics defined on X1, X2 · · · , Xn. Then a sequence of statistics pn is a limiting P

values, denoted by LP , if pn ∈ [0, 1] and pn satisfies the following:
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1. limsupn→∞PF (pn ≤ t) ≤ t, for all F ∈ Ω1 and for any t ∈ [0, 1].

2. pn → 0 in probability for all F ∈ Ω2

Note that under the Definition 2.3.7.1 the classical P values is a LP provided that

the underlying test is a consistent one [4]. In reality, the P values used in most

tests are derived from the limiting null distributions of test statistics, and they are

only approximations of the true P values, These approximate P values are usually

LP ′s.

The definition limiting P values (LP ) based on data depth and bootstrap

methods proposed by Liu and Singh and denoted by pn is as follows.

Definition 2.3.7.2 Limiting P values based on data depth for H : ΘF = Θ0

versus H : ΘFneqΘ0 Let X1,X2, · · · ,Xn be a random sample from F , a d-

dimensional distribution, d ≥ 1, and let ΘF be a finite dimensional functional of

F . Consider testing H : ΘF = Θ0 versus H : ΘFneqΘ0, where Θ0 is fixed. Let

Θ̂n ≡ Θ̂n(X1,X2, · · · ,Xn) be an estimate of ΘF and let Θ̂∗
n ≡ Θ̂∗

n(X∗
1,X

∗
2, · · · ,X∗

n)

be a bootstrap estimate of Θ̂F , where X∗
1,X

∗
2, · · · ,X∗

n is a bootstrap sample drawn

with replacement from X1,X2, · · · ,Xn. Let Gn and G∗
n denote the sampling

distribution for Θ̂n and ˆTheta∗n. For testing H : Θ = Θ0 versus K : Θ 6= Θ0,

pn = PG∗
n
{Θ∗

n : D(G∗
n; Θ∗

n) ≤ D(G∗
n; Θ0)} (2.41)

where D(·) indicate the data depth such as MhD. Here are two steps to get

LP ′s(pn) in practice.

1. Calculate B values of Θ∗
n, say Θ∗

n,1,Θ
∗
n,2, · · · ,Θ∗

n,B.

2. Based on the empirical distribution of these B-values, say G∗
n,B, compare each

D(G∗
n; Θ∗

n) to D(G∗
n; Θ0) to obtain the fraction of Θ∗

n’s that have less depth

than Θ0.

3. pn = B−1
∑B

i=1 I{D(G∗
n; Θ∗

n) ≤ D(G∗
n; Θ0)} where I(·) is indicator function

with I(A) = 1 if A occurs and otherwise I(A) = 0.
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Thus, pn(LP ) represent the fraction of outlaying bootstrap estimates (Θ∗) to the

hypothesized value (Θ0) when using data depth as a measures of outlaying (e.g.,

less MhD, more outlaying). In their paper, they showed that the distribution of pn

converges to U [0, 1] for any fixed F in H, given the distribution of an(Θn − Θ0)

(for example, (X̄ −M0)), called L, is symmetric as an → ∞. Also, pn degenerates

to zero in limit under any alternative hypothesis. Thus, pn defined in Definition

2.3.7.2 are the limiting P value (LP ) based on Definition 2.3.7.1.

Moreover, Liu and Singh (1997 [44]) also discussed that different choices of

data depth such as Tukey’s depth, Simplicial depth, or Majority depth, could

result different aspects of inference such as robustness. For example, they stated

that a ”moment dependent” depth (e.g., Mahalanobis depth) is more sensitive

to outliers, and thus tends to be less robust. Later in Chapter 4, we adopt LP

based on Mahalanobis depth and bootstrap methods for multivariate hypothesis

testing of total indirect effects and individual indirect effects on subsequent sets of

endogenous variables in the MVLPM.



CHAPTER 3
The MULTIVARIATE LINEAR PATH MODEL (MVLPM)

The Univariate linear path model was defined in Equation 2.7 of the previous

chapter. In this chapter, we define the multivariate linear path model (MVLPM)

and derive a multivariate extension of the Calculus of Coefficient. We also present

general notation and definitions of total effects (TE), direct effects (DE), and

indirect effects (IE) in the MVLPM using those notation.

3.1 The Model and Assumptions

Suppose we have a vector of q exogenous variables, called X, and p vectors

of p1 , p2 , ..., pp dimensional endogenous variables, Y1,Y2, ...,Yp, respectively.

Assume that the endogenous vectors are causally ordered and let the matrix of

pi × q coefficients relating the vector of endogenous variables Yi to X be denoted

by Γi, i = 1, 2, ..., p, and let Blk denote the pl × pk matrix of coefficients relating Yk

to Yl, k < l. Then, the Multivariate Linear Path Model is defined by

Y1 = Γ1X + e1

Y2 = B21Y1 + Γ2X + e2

Y3 = B31Y1 + B32Y2 + Γ3X + e3

...

Yp = Bp1Y1 + · · ·+ Bp(p−1)Yp−1 + ΓpX + ep (3.1)

We assume that 1) the ei, i = 1, 2, · · · , p follow multivariate normal distributions

with zero mean vector and covariance matrix Σi and that the ei are mutually

independent ; and 2) ei are independent of the vector of exogenous variables,

X. Note that errors within a vector of endogenous variables are not necessarily

37
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independent but the errors between vectors of endogenous variables are mutually

independent. The model describes linear relationships among causally ordered

random vectors. But, within each vector of endogenous variables, causal ordering

is not assumed. Thus, the model is appropriately called a multivariate linear

structural equation model. Adopting the terminology of univariate linear structural

equations when errors are mutually independent, we call the model recursive.

Recursive linear structural equation models are called path models. Thus, the

model above defines the Multivariate Linear Path Model (MVLPM). Note that,

this general Multivariate linear path model can be presented in as a concatenated

form. Equation 3.1 above as follows.

Yp1×1
1

Yp2×1
2

Yp3×1
3

...

Y
pp×1
p


=



0 · · · · · · · · · 0

Bp2×p1

21 0 · · · · · · 0

Bp3×p1

31 Bp3×p1

32 0 · · · 0

...
...

. . . 0 0

B
pp×p1

p1 B
pp×p1

p2 · · · B
pp×p1

p(p−1) 0





Yp1×1
1

Yp2×1
2

Yp3×1
3

...

Y
pp×1
p



+



Γp1×1
1

Γp2×q
2

Γp3×q
3

...

Γ
pp×q
p


Xq×1 +



ep1×1
1

ep2×1
2

ep1×3
3

...

e
pp×1
p


(3.2)

Thus, the general multivariate linear path model can be written in matrix form as

Y = BY + ΓX + E (3.3)

where Y is a vector of Σpi elements formed by the vertical concatenation of the

vectors of endogenous variables, Y1,Y2, ...,Yp, X is a vector of q exogenous

variables, and E is a vector of Σpi elements formed by the vertical concatenation of
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e1, e2, ..., ep. The assumptions of structural equations in multivariate path models

can be extended from classical univariate path analysis models in Johnson [35] as

follows:

1. E follows a Multivariate Normal distribution with Mean 0 and Variance Ψ

= a block diagonal matrix with Σi, i = 1, 2, ..., p. This assumption means

that errors within the vector of endogenous variable are not necessarily

independent but errors between vectors of endogenous variables are mutually

independent.

2. The elements of E are mutually independent of the elements of X

3. B is block lower triangular with zeros on the diagonal. This means that each

endogenous variable is a function only of previous endogenous variables and

exogenous variables.

4. The matrix I−B is nonsingular.

3.2 Recursive Substitution

In path analysis, the interest is estimation of direct and indirect effects by

partitioning total effects into the sum of a direct effect and all possible indirect

effect, which is called ”Calculus of Coefficients”. This can be easily shown in

recursive substitution. In order to illustrate this idea in the MVLPM, we rewrite

the system of simultaneous linear structural equation in Equation 3.1 in more

general form as follows,

Y1 = m1(X : Γ1) + e1

Y2 = m2(Y1,X : B21,Γ1) + e2

Y3 = m3(Y1,Y2,X : B31,B32,Γ1) + e3

...

Yp = mp(Y1,Y2, · · · ,Yp−1,X : Bp1,Bp2, · · · ,Bp(p−1),Γp) + ep (3.4)
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where mi is defined as the vector valued linear mean functions. So by substituting

Y1,Y2, · · · Yp−1 in terms of their associated vector valued function notation,

m1,m2, · · · ,mp−1 and e1, e2, · · · , ep−1, we can re-write mp and, consequently Yp as

a function of Y1,Y2, · · · ,Yp−1,B2·,B3·, · · · ,Bp· as well as X and Γ1,Γ2, · · · ,Γp,

where Bi· represents multiple matrices of Bi1, · · · ,Bij, i = 2, 3, · · · , p; j =

1, 2, · · · , i − 1, j < i. For example, Bp· represents Bp1,Bp2, · · · ,Bp(p−1). In other

words, Bi· is all matrices in ith block in row of the lower triangular matrix B in

Equation 3.2 That is that we can write

Yp = mp[Y1,m2(Y1,X;B2·,Γ2) + e2,m3(Y1,Y2,X;B3·,Γ2) + e3,

· · · ,mp−1(Y1,Y2,Y3, · · · ,Yp−1,X;Bp·,Γp) + ep−1] + ep

(3.5)

Now, by multiple recursively substituting, Y1 into Y2, Y2 into Y3,· · · ,Yp−1

into Yp, Yp can be written as a function of Y1, X, B21, Γ1,Γ2 · · · ,Γp, and

e1, e2, · · · , ep as follows.

Yp = mp[Y1,m2(Y1,X;B2·,Γ2) + e2, f3(Y1,m2(Y1,X;B2·,Γ2) + e2

,X;B3·,Γ2) + e3 · · · ,mp−1(Y1,Y2,m2(Y1,X;B2·,Γ2) + e2

, · · · ) + ep−1] + ep

= Bp1Y1 + Bp2 [B21Y1 + Γ2X + e2] (3.6)

+ Bp3 [B31Y1 + B32 [B21Y1 + Γ2X + e2] + Γ3X + e3]

+ · · ·+ Bp(p−1)[B(p−1)1Y1 + B(p−1)2[B21Y1 + Γ2X + e2]

+ · · ·+ Γp−1X + ep−1] + XΓp + ep (3.7)

Similarly,we can write Yp−1,Yp−2, ...,Y2 as functions of the Y vectors, X vectors

and e vectors. From this form of the model,the COC for partitioning the total

effect of Yj on Yi, j < i into direct and indirect effects can be derived.
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In order to illustrate the idea above more precisely, consider vector of q

exogenous variables, X = (X1, X1, · · · , Xq)
′ and three vectors of p1 , p2 , p3

endogenous variables, Y1 = (Y11 , Y12 , · · · , Y1p1
)′,Y2 = (Y21 , Y22 , · · · , Y2p2

)′, and

Y3 = (Y31 , Y32 , · · · , Y3p3
)′ respectively and suppose the regression coefficient of X

on Y1 is denoted by Γ1, matrix of p1 × q , the regression coefficient of X on Y2

by Γ2, matrix of p2 × q , the regression coefficient of X on Y3 called Γ3, matrix of

p1 × q , and the regression coefficient of Y1 on Y2 by B21,the matrix of p1 × p2

and the regression coefficient of Y2 on Y3 by B32, the matrix of p3 × p2 and so on.

Figure 3.1 illustrate the corresponding path diagram based on multivariate linear

path model defined above. Then the set of structural equations obtained from the

general multivariate linear system defined by Equation 3.1 is;

Y1 = Γ1X + e1 (3.8)

Y2 = B21Y1 + Γ2X + e2 (3.9)

Y3 = B31Y1 + B32Y2 + Γ3X + e3 (3.10)

where we assume that ei follow multivariate normal distribution with mean 0

and ei are mutually independent (i = 1, 2, 3). Suppose we want to find total

effect of Y1, p1 endogenous variables on Y3, p3 response variables. Then, first, we

substitute the right side of Equation 3.9 into Y2 in Equation 3.10. This is to obtain

Y3 as a function of Y1, X, and e3. This yields

Y3 = B31Y1 + B32(B21Y1 + Γ2X + e2) + Γ3 + e3

= (B31 + B32B21)Y1 + (B32Γ2 + Γ3)X + B32e2 + e3 (3.11)
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Secondly, from Equation 3.11, we take a conditional expectation of Y3 given

Y1 = y1 and X = x with respect to e2, and e3 then

E(Y3|Y1 = y1,X = x) = (B31 + B32B21)y1 + (B32Γ2 + Γ3)X (3.12)

Thus, total effect of Y1 on Y3 is represented by (B31 + B32B21), which is sum

of a direct effect (DE) of Y1 on Y3 (B31) and an indirect effect(IE) of Y1 on Y3

through Y2 (B32B21). This is the concept of ”Calculus of Coefficients” (COC).

Also, it is easy to see that IE of Y1 on Y3 is just the product of the DE of Y2 on

Y3 (B32) and the DE of Y1 on Y2 (B21). Note that the (m,n)th element of indirect

effect of Y1 on Y3 through Y2, B32B21 , represent a sum of an indirect effect of nth

element in Y1 on mth element of Y3 through all elements (p2 elements) in Y2. This
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can be shown easily by the law of matrices multiplication as follows:

Bp3×p2

32 Bp2×p1

21 =



∑p2

s β32.1sβ21.s1,
∑p2

s β32.1sβ21.s2, · · · ,
∑p2

s β32.1sβ21.sp1∑p2

s β32.2sβ21.s1,
∑p2

s β32.2sβ21.s2, · · · ,
∑2

s β32.2sβ21.sp1

...∑p2

s β32.p3sβ21.s1,
∑p2

s β32.p3sβ21.p21, · · · ,
∑p2

s β32.p3sβ21.sp1


(3.13)

where

B32 =



β32.11, β32.12, · · · , β32.1p2

β32.21, β32.22, · · · , β32.2p2

...

β32.p31, β32.p32, · · · , β32.p3p2


(3.14)

and

B21 =



β21.11, β22.12, · · · , β21.1p1

β21.21, β21.22, · · · , β21.2p1

...

β21.p21, β21.p22, · · · , β21.p2p2


(3.15)

Thus, (m,n)th element of B32B21 represent sum of indirect effects of nth element

in Y1 on mth element in Y3 though all p2 elements of Y2. Consequently, (m,n)th

element of B31 + B32B21, which is a total effect of Y1 on Y3 represent sum of a

direct effect of nth element in Y1 on mth element in Y3 and an indirect effect of nth

element in Y1 on mth element in Y3 though all p elements of Y2.

In this section, we have demonstrated that recursive substitution can be

used to find the effect of one vector of endogenous variables on another vector of

endogenous variables occurring later in multivariate causal chain and interpretation

of indirect effect in the MVLPM. Also we demonstrated COC can be easily

shown through recursive substitution if the model is simple as the illustrative

example above. Note that this method holds under the assumption, conditional
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independence among sets of endogenous variables. However, if the model involve

large number of multiple equations with large number of parameters to estimate,

the COC might not easily seen through recursive substitution. To overcome this

problem, we defined effects as derivatives of vector valued mean functions and

derive the Multivariate Calculus of Coefficients in next section.

3.3 Definition of Total, Direct, and Indirect Effects

In classical univariate path models, the interest is estimation of direct and

indirect effects, and the partitioning of total effects into the sum of a direct effect

and all possible indirect effects. Before defining total, direct, and indirect effects in

the context of the Multivariate Liner Path Model, we introduce some notation. The

following notation and definitions extend those of Johnson (2001) for univariate

models.

3.3.1 Notation

For any arbitrary l and k such that 1 ≤ k < l ≤ p, YAi
collectively

represents all random vectors antecedent to Yi, i = 2, 3, · · · , p in causal ordering of

endogenous vectors; Let YIik
denote, collectively, the set of all vectors intermediate

to Yi and Yk, i = k + 1, k + 2, · · · , l. Let yAi
,yk,yIik

denote given values of

the YAi
,Yk,YIik

,respectively. Now, let mk+1 = E(Yk+1|yAk
,yk) and mi =

E(Yi|yAk
,yk,yIik

). It will be convenient in subsequent sections to have a notation

for

E(Yi|yAk
,yk) = EYIik

[E(Yi|yAk
,yk,yIik

)] (3.16)

written as a multivariable, nested compound function of previous such expecta-

tions. Let

mc
i = EeIik

[E(Yi|yAk
,yk,mk+1 + ek+1,m

c
k+2 + ek+2,

· · · ,mc
i−1 + ei−1)] (3.17)
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where eIik
= (e′k+1, e

′
k+2, · · · , e′i−1)

′. Note that, for the linear model defined by

Equation 2.1, we have

mc
k+1 = mk+1(yAk

,yk)

mc
k+2 = mk+2(yAk

,yk,mk+1)

mc
k+3 = mk+3(yAk

,yk,mk+1,m
c
k+2)

...

mc
l = ml(yAk

,yk,mk+1,m
c
k+2, · · · ,mc

l−1) (3.18)

where

mc
i = Bi1y1 + Bi2y2 + · · ·+ Bi(k)yk + Bi(k+1)m

c
k+1

+Bi(k+2)m
c
k+2 + · · ·+ Bi(i−1)m

c
i−1

where i = k + 2, k + 3, · · · , l.

Then, let Jml
(yk) represent the Jacobian matrix of the vector valued linear

mean function of Yl given YAl
with respect to the given value of yk. For the linear

model, Jml
is also the matrix of path coefficients, Blk in the model defined in

Equation 2.1.

Next, let Ak denote the set of subscripts of all vectors of variables an-

tecedent to Yk (i.e,, Ak = {1, 2, · · · , k − 1}). Let Ilk denote the set of sub-

scripts of all intermediate sets of variables between Yk and Yl. That is ,

Ilk = {k + 1, k + 2, · · · , l − 1}. Let 2Ilk denote the power set of Ilk and then,

let Q be an arbitrary element of 2Ilk . In other words, Q consists of the set of

subscripts associated with an an arbitrary subsets of variables in YIlk
. Let l(Q)k

denote the path from Yk to Yl through the intermediate variables with sub-

scripts in Q and denote the subscripts of an arbitrary pair of adjacent in the path

by (k′, l′). For an example, suppose Q = {k + 1, k + 3}, then (k′, l′) represents
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(k, k + 1), (k + 1, k + 3), or(k + 3, l) and these pairs of subscripts are associated with

the indirect path Yk → Yk+1 → Yk+3 → Yl. If Q = Ø, then the set of indexes

l(Q)k is simply {l, k}. Thus, l(Q)k implies the path associated with the direct

effect of Yk on Yl, in this case.

In addition, let TElk|Ak
denote the total effect of variable Yk on variable Yl ,

conditional on sets of vectors of antecedent variables {Y1,Y2, · · · ,Yk−1}, for any k

and l such that 1 ≤ 1k < l ≤ p. If k = 1 then Ak = Ø. Thus, Elk|Ak
is denoted as

TElk. Let DElk denote the conditional direct effect of a vector of variables Yk on a

vector of variables Yl given sets of vectors of antecedent variables YAk
.

3.3.2 The MVLPM with Four Sets of Continuous Variables

In previous section, we presented the general notations to define the general

definitions of effects. Before we present the general definitions of effects, we

consider a MVLPM with four sets of endogenous variable to illustrate the idea used

for general definitions of effects and the Multivariate COC. Using this illustrative

example, we show that the total, direct, and indirect effects can be defined as

derivatives of vector valued function and present general definitions of total effects

(TE), direct effects (DE), and indirect effects (IE) in the MVLPM. Also, we

demonstrate how the COC hold in the MVLPM.

Suppose we have a system of Multivariate linear models with four sets of

variables as follows:

Y1 = Ψ + e1

Y2 = B21Y1 + e2

Y3 = B31Y1 + B32Y2 + e3

Y4 = B41Y1 + B42Y2 + B43Y3 + e4

(3.19)
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Then, we can Equation 3.19 using notations we defined in the previous section such

as vector valued and multiply nested mean function ,mi and mc
i , i = 1, 2, 3, 4 or

YI41 = (Y2‘,Y3‘), etc. Then we have

Y1 = Ψ + e1

Y2 = m2(Y1 : B21) + e2

Y3 = m3(Y1,Y2 : B31,B32) + e3

Y4 = m4(Y1,Y2,Y3 : B41,B42,B43, ) + e4 (3.20)

Then, we can write the TE of Y4 on Y1 as

TE41 =
∂EYI41

(Y4|Y1 = y1)

∂y1′
(3.21)

=
∂

∂y1′
[Ee′I41

(Y′
1,m

c′

2 + e′2,m
c′

3 + e′3)] (3.22)

where mc′
2 = m′

2(y1), mc′
3 = m′

3(y1,m
c
2(y1)

′), and e′I41 = (e′2, e
′
3). Since eI41 enter

Equation 3.22, we have

TE41 =
∂mc

4

∂y′1
(3.23)

where mc
4 = m4(y1,m

c
2,m

c
3). Now, we have a vector valued and recursively nested

compound function of multiple arguments. Thus, we apply the Lemma Lemma

2.2.2 to the right side of Equation 3.23. Then we have

TE41 =
∂m4

∂y′1
+
∂m4

∂m′
2

∂mc
2

∂y′1
+
∂m4

∂m′
3

∂mc
3

∂y′1
(3.24)

=
∂m4

∂y′1
+
∂m4

∂m′
2

∂mc
2

∂y′1
+
∂m4

∂m′
3

[
∂m3

∂y′1
+
∂m3

∂m′
2

∂mc
2

∂y′1
] (3.25)

(3.26)
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Then, since all error terms enter linearly in the model,

∂mi

∂mj

=
∂mi

∂(mj + ej)

∂(mj + ej)

∂mj

(3.27)

=
∂mi

∂(mj + ej)
(3.28)

=
∂mi

∂yj

(3.29)

= Jmi
(yj) (3.30)

where Jmi
(yj) is the Jacobian matrix of mi evaluated at yj, i = 2, 3, 4, j < i.

Hence, the right side of Equation 3.30 is

TE41 = Jm4(y1) + Jm4(y2)Jm2(y1) + Jm4(y3)[Jm3(y1) + Jm3(y2)Jm2(y1)] (3.31)

Each Jacobian is a matrix of path coefficient in the model we specified in Equa-

tion 3.19. Thus, the right side of Equation 3.31 become

TE41 = B41 + B42B21 + B43B31 + B43B32B21 (3.32)

= DE41 + IE4(2)1 + IE4(3)1 + IE4(3,2)1 (3.33)

= DE41 +
∑

IE41 (3.34)

This is equal to the quantity when we use recursive substitution. Also, It is showed

that a total effect is sum of a direct effect (B41) and indirect effects through all

possible path from Y1 to Y4, called total indirect effects, which show the Calculus

of Coefficients hold in the MVLPM. Moreover, B42B21 represent a first order

indirect effect through Y2, B43B31 represent a first order indirect effect through

Y3, and B43B32B21 represent a second order indirect effect through Y2, and

then Y3. Using the same analogy, we can obtain a total effect of Y2 on Y4 when

controlling the set of vectors of antecedent variables, noted as A2, in this case

A2 = {Y1}, noted as TE42|A2 based on notation in the previous section, and a total
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effect of Y1 on Y3, noted as TE31 as follows:

TE42|A2 =
∂mc

4

∂y′2

=
∂m4

∂y′2
+
∂m4

∂m′
3

∂mc
3

∂y′2

= B42 + B43B32

= DE42 + IE4(3)2 (3.35)

and,

TE31 =
∂mc

3

∂y′1

=
∂m3

∂y′1
+
∂m3

∂m′
2

∂mc
2

∂y′1

= B31 + B32B21

= DE31 + IE3(2)1 (3.36)

In this illustrative example, we have showed that total, direct, and indirect

effects can be defined as derivatives of vector valued mean function and the

univariate COC can be extended to the Multivariate COC in MVLPM. One thing

to be mentioned is that the notion of derivatives by using the Lemma 2.2.2 as

shown in current section, yields the same results as those obtained by recursive

substitution, which is commonly done in univariate path model. Moreover, in the

illustrative example, we see that all total effects ,TE41, TE42|A1 , TE31, are equal

to the matrix sum of a direct and indirect effects, B41 + B43B31 + B43B32B21,

B42 + B43B32, and B31 + B32B21, respectively. In the following section, we will

present general definitions of a total, direct, and indirect effects in the MVLPM

and derive the Multivariate COC.

3.3.3 General Definitions of Effects

Now, we present general definitions of total effects (TE), direct effects (DE),

and indirect effects (IE) in the Multivariate Path Model with continuous variables.
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We examine the total, direct and indirect effects of a vector of variable Yk, for any

k and l such that 1 ≤ k < l ≤ p using notation we defined in the Section 3.3.1.

Without loss of generality, we assume there are no exogenous variables throughout

the remainder of this section.

Definition 3.3.3.1.The conditional total effect of Yk on Yl, 1 ≤ k < l ≤

p, given YAk
= yAk

and Yk = yk, in a causal chain of p vectors of endogenous

variables, is denoted by TElk|Ak
and is defined by

TElk|A =
∂

∂y′k
EYl|YAk

,Yk
(Yl|YAk

= yAk
,Yk = yk)

=
∂mc

l

y′k
(3.37)

Note that if k = 1 thenA1 = Ø. Thus, there are no variables on which to condition.

Therefore, when k = 1, the conditional total effect is equivalent to th unconditional

total effect and noted as TElk.

Definition 3.3.3.2 The conditional direct effect of Yk on Yl, 1 ≤ k <

l ≤ p, given YAk
= yAk

and Yk = yk, in a causal chain of p vectors of endogenous

variables, is denoted by DElk|Ak
and is defined by

DElk|Ak
=

∂

∂y′k
EYl|YAk

,Yk,(Yl|YAk
= yAk

,Yk = yk,YIlk
)

= Jml
(yk) (3.38)

Definition 3.3.3.3 The conditional indirect effect of Yk on Yl, 1 ≤ k <

l ≤ p, through an arbitrarily selected set of intermediate endogenous vectors with

associated set of subscripts Q, given YAk
= yAk

and Yk = yk, is denoted by IEl(Q)k
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and is defined by

IEl(Q)k =
∏

(k′,l′)∈l(Q)k

DEl′k′

=
∏

(k′,l′)∈l(Q)k

Jl′(yk′) (3.39)

where (k′, l′) denotes pairs of adjacent subscripts in the set l(Q)k. Note that

IEl(Q)k =
∏

(k′,l′)∈l(Q)k Bl′k′ when the model is linear. To exemplify this definition,

consider the case where Q = (k + 1, k + 3). Then,

IEl(Q)k = IEl(k+3,k+1)k

= DEl(k+3)DE(k+3)(k+1)DE(k+1)k

= Jl(yk+3) · Jk+3(yk+1) · Jk+1(yk)

If the model is linear, then IEl(Q)k = Bl(k+3)B(k+3)(k+1)B(k+1)k in this case.

Henceforth, we shall use the nomenclature “direct effects” and “indirect effects

(IE)” in place of the more pricise “conditional direct effect” and ”‘ conditional

indirect effect”, leaving implicit the fact that DElk and IEl(Q)k are defined based

on conditional expectations.

3.3.4 The Multivariate Calculus of Coefficients

We now derive the multivariate Calculus of Coefficients(COC) for the MVLPM

defined in Section 2.1.

Theorem 3.3.4.(The Multivariate Calculus of Coefficients) Given the

Multivariate Linear Path Model defined by Equation 2.1 and Assumptions 1-2, the

total effect of Yk on Yl, given YAk
= yAk

and Yk = yk, is

TElk|A = Jl(yk) +
∑

Q∈2Ilk−Ø

∏
(k′,l′)∈l(Q)k

Jl′(yk′)

= DE +
∑

Q∈2Ilk−Ø

IEl(Q)k (3.40)
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where (k′, l′) denotes pairs of adjacent subscripts in the set l(Q)k and 2Ilk − Ø

represents all elements of the power set of {k + 1, k + 2, · · · , l − 1} except the null

set.

Proof. Let mc
l are defined as in Section 2. Then

TElk|Ak
=

∂

∂y′k
EYl|YAk

,Yk
(Yl|yAk

,yk)

=
∂

∂y′k
EYIlk

|YAk
,Yk

[ml(yAk
,yk,YIlk

)]

=
∂

∂y′k
EeIlk

[mc
l (yAk

,yk,m
c
Ilk
, eIlk

)] (3.41)

where

mc′

Ilk
= (m′c

k+1,m
′c
k+2, · · · ,m′c

l−1)
′

with mc
i as defined in Equation 3.18 and eIlk

denoting the row vector (e′k+1, e
′
k+2, e

′
l−1).

Because the elements of eIlk
enter Equation 3.41 linearly, we have

TElk|Ak
=

∂

mc
l (yAk

,yk,mc
Ilk

)
∂y′k (3.42)

where mc
l is defined in Equation 3.18. Now, by applying an extension of Multi-

Variable Chain Rule (MVCR) for vector valued function (Khuri, 1992) to vector

valued and recursively nested compound functions of multiple arguments, we write

Equation 3.42 as

TElk|Ak
=

∂ml

∂y′k
+

∂mc
l

∂m′c
k+1

∂mc
k+1

∂y′k
+

∂mc
l

∂m′c
k+2

∂mc
k+2

∂y′k

+ · · ·+ ∂mc
l

∂m′c
l−1

∂mc
l−1

∂y′k
(3.43)

Each
∂mc

i

∂y′
k
, i = k + 1, k + 2, · · · , l − 1 can be further expanded into sums of products

of partial derivative matrices (Jacobians) by applying Lemma.2.2.1, which is based

on recursive application of the MVCR until no compound functions remain in the
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expression. Then, in terms of Jacobians Equation 3.42 becomes

TElk|Ak
= Jml

(yk) +
l−1∑

i=k+1

Jmc
l
(mi)Jmc

i
(yk) (3.44)

and from Equation 3.18 we have for any arbitrary i and j, k ≤ j < i ≤ p,

Jmc
i
(mc

j) = Bij (3.45)

Further more, Jml
(yk) = Blk. Then Equation 3.44 can be written as

TElk|Ak
= Blk +

l−1∑
i=k+1

BliJmc
i
(yk), (3.46)

where

Jmc
i
(yk) = Jmi

(yk) +
i−1∑

j=k+1

Jmc
i
(mc

j)Jmc
j
(yk)

= Bik +
i−1∑

j=k+1

BijJmc
j
(yk) (3.47)

The first term of Equation 3.47 yields the direct effect of Yk on Yl as defined

in Definition 3.3.3.2 and the second term represents sums of all possible indirect

effects, which themselves are products of direct effects as defined in Definition

3.3.3.3 By recursively applying Equation 3.47 to expand 3.46 until in involves no

compound functions, we obtain the results of Theorem.3.3.4.

The definition of total, direct, and indirect effects above extend those of the

univariate linear path model(Li, 1975 [42]) to multivariate linear path models and

Theorem 3.3.4 extends the COC for univariate models (Fienberg, 1977 [23]) to

Multivariate Models.

In next chapter, we present estimation and general inference of total, direct

and indirect effects in the MVLPM.



CHAPTER 4
ESIMATION AND INFERENCE

4.1 Estimation of Model Parameters

Estimation of parameters in the system of equation is usually achieved

using the Limited Information Maximum Likelihood (LIML), where LIML refers

to the maximum likelihood (ML) estimation of parameters contained within a

single equation, using information contained in observations of variable in that

equation [34]. This method is distinguished from the Full Information Maximum

Likelihood(FIML)method, where the FIML method uses information on sets

endogenous variables within the entire system of equations, usually, takes into

account the error covariances across equations to estimate parameters. The

following theorem shows that the FIML estimators of parameters in MVLPM,

specified in equation 3.1 is identical to LIML estimators.

Theorem 4.1. Under the Multivariate Linear Path Model as specified in

equation 3.1 and the corresponding assumptions made in section 2.1, the following

statement hold true:

1. The FIML estimators of ith multivariate regression equation in the system,

Bi, where Bi = (Bi1 : Bi2 : · · · : Bi(i−1)), i = 2, 3, , · · · , p is identical to the single

equation LIML estimator.

2. B̂i is independent of B̂i′ for all i 6= i′, i = 2, 3, · · · , p, i′ = 2, 3, · · · , p

In order to prove the first property of Theorem 2.1, let consider Bi denote the

pi ×
∑i−1

j=1 pj matrix obtained by concatenating the coefficient matrix in the ith

equation of the MVLPM defined in 3.1. That is,

Bi = (Bi1 : Bi2 : · · · : Bi(i−1)) (4.1)

54
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Then without mutually independent assumption on ei, i = 1, 2, · · · , p, the joint

likelihood function of function of Bi and Ψ∗, where Ψ∗ denote the covariance

matrix of e1, e2, · · · , ep based on the structural equation in Equation 3.1, can be

written as

L(B1 : · · · : Bp|Y1, · · · ,Yp,X) =
n∏

j=1

p∏
i=1

fq(yi|YAi
;Bi,Ψ

∗) (4.2)

Thus, the Full Information Maximum Likelihood(FIML) estimates can be obtained

by maximizing the right hand side of Equation 4.2 by the definition of FIML

estimates. However, with mutually independent assumption on ei, i = 1, 2, · · · , p

(i.e., Ψ is a block diagonal matrix with Σi where Σi denote the covariance matrix of

ei, i = 1, 2, ..., p), the equation 4.2 can be written as

L(Bi1 : · · · : Bi(i−1)|Y1, · · · ,Yp,X) =
n∏

j=1

p∏
i=1

fi(yi|YAi
;Bi,Σi) (4.3)

Therefore, differentiating the right hand side of Equation 4.3 with respect to

parameters from the equation for, say, the ith set of endogenous variable amounts

to simply differentiating fi(yi|YAi
;Bi,Σi) which is the likelihood equations

associated only with the ith equation in the system. Thus, the first property of

Theorem 4.1 hold.

The second property of Theorem 4.1 is true because the covariance matrix of

FIML estimators the same as the FIML information matrix due to the fact that the

FIML estimators of coefficient matrices in Equation 3.1 is the unbiased maximum

likelihood estimators of the mean vector, hence, it is the uniformly minimum

variance unbiased estimator ( [2], page=77-80) of the mean vector. Then, the FIML

information matrix, say, I(B) is a block diagonal matrix, where the ith block is

Ii(Bi) is identical to the LIML information matrix for the ith equation parameters.

This is due to the fact that −E( ∂2l(B)
∂βijβi′j′

) = 0 because ∂l(B)
βij

does not depend on

parameters of the i′th equation when i 6= i′,where βij indicate the (i, j)thelement
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of matrix of regression coefficient in ith equation, Bi, j = 1, 2, · · · ,
∑i−1

k=1 pk. The

theorem 2.1, in practice, allow to use LIML estimators in the MLPM and the

Ordinary Least Square (OLS) estimator can be used as the LIML estimator in

each equation. In other words, under the multivariate normality assumption for

ei, i = 1, 2, · · · , p, in Equation 3.1, the OLS estimators of Bi and associated

estimator of Σi, respectively. That is, the MLEs are

B̂i = Ypi×n
i Y

n×
Pi−1

j=1 pj

Ai
(YAi

Y′
Ai

)−1 (4.4)

and

Σ̂i = n−1(Yi − B̂iYAi
)(Yi − B̂iYAi

)′ (4.5)

It follows from the independence and normality assumption on ei, i = 1, 2, · · · , p,

that B̂i and B̂i′ , are independent ∀ i 6= i′. These LIML estimators can be treated

as independent for large sample sizes. In addition, under mild regularity conditions,

each B̂i is approximately normally distributed with variance covariance matrix

I−1(Bi), i = 2, 3, · · · , p ([2], page=81). In the next section, we present methods of

inference for indirect effects.

4.2 Inference

In this section, we present a procedure for constructing confidence intervals

and testing indirect effects. Given the MVLPM and the assumptions in Equa-

tion 3.1, we present the methods for testing of indirect effects that involves testing

associated matrices of path coefficients and products of matrices of path coeffi-

cients. In order to test an IE, consider how matrices of IE are formed. For example,

consider indirect effect of Y1 on Y3, denoted by (IE3(2)1), in our motivating ex-

ample. Then based on Definition 2.3. (IE3(2)1) = B32B21. Now, consider how

the (m,n)th element of B32B21. The (m,n)th element of B32B21 represent sum of

indirect effects of nth element in Y1 on mth elements in Y3 through all p2 elements

of Y2 represented by p2 single indirect paths. Each single indirect path produces a



57

single IE, which is a product of path coefficients corresponding to that single path.

The sum of these p2 numbers of products of path coefficients comprise the (m,n)th

element of B32B21. Testing each elements of single path IEs or matrices of IEs

require estimation of nonlinear function of parameters. More precisely, we need to

test estimate and test the sum of products of model parameters. Moreover, since

our parameters (i.e., IEs) are a matrix form, simultaneous or multivariate tests are

required. Hence, variance estimation of stung our vector is required.

A common procedure to obtain the variance of nonlinear function of pa-

rameters is delta method. However, both total IEs (sum of IEs through all

possible indirect path) and single path IEs (IE through single indirect path)

are matrices, and each element of the total or single IEs involves nonlinear func-

tions of path coefficients of one elements of set of endogenous variables, say

Yki
, i = 1, 2, · · · , pk on one elements of subsequent set of endogenous variables ,

say Yli , i = 1, 2, · · · , pl, 1 ≤ k < l ≤ p. Thus, the delta method is, in practice, is

not practical for this multivariate form of nonlinear functions of large number of

parameters, because the derivatives of this matrix of nonlinear functions is going to

get quite messy. Therefore, we apply the bootstrap method for general inference in

the MVLPM.

For simultaneous or multivariate hypotheses testing of IEs or Total IEs, we

suggest two approaches. One is a standard ch-isquare test using the bootstrap

variance estimate based on their asymptotic properties . The other is based

on limiting P values (LP) based on data depth, introduced by Liu and Singh

(1997 [44]) as was described in Chapter 2.3.7. Also, we can apply three different

bootstrap methods of constructing the bootstrap confidence region for matrix of

IE: standard chi-square confidence region using the bootstrap variance estimates,

the ordinary percentile method, and the percentile-t method as was described in

Chapter 2.3.6.
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4.2.1 General Hypothesis for Multivariate Indirect effects

The null hypothesis of no single IE of pk variables in Yk on pl variables in Yl

can be written as

H0 :
∏

(k′,l′)∈l(Q)k

Bl′k′ = 0 (4.6)

where Bl′k′ denotes the coefficient matrix corresponding to the direct effect of Yk′

on the Yl′ where k′ and l′ are adjacent member in the set Q and Q represent any

arbitrary element of 2Ak . In other words, the pair (k′, l′) denotes a pair of adjacent

indices in the set k ∪ Q ∪ l, expressed as l(Q)k where 2Ak denotes the power set

of Alk, Alk = {k + 1, k + 2, · · · , l − 1}. Thus, there will be
∑m

r=0mCr numbers

of paths, called multivariate paths, from Yk on Yl, where m denote the number

of intermediate sets of variables between Yk and Yl that are involved in IEl(Q)k.

As was described in Chapter 3.3.4, the total number of indirect multivariate

paths from Yk on Yl can be determined as the quantity m!
r!(m−r)!

− 1 based on

combinatorial mathematics. Thus, the null hypothesis of no total IEs of Yk on Yl

can be written as

H0 :
T∑

t=1

∏
(k′,l′)∈l(Q)k

B
(t)
l′k′ = 0 (4.7)

where T = m!
r!(m−r)!

represents the total numbers of multivariate IEs and B
(t)
l′k′

represent the coefficient matrix corresponding to the tth multivariate indirect path.

For example, consider the model with four sets of variables, Y1,Y2,Y3,Y4. Then,

the number of multivariate paths from Y1 on Y4 is
∑2

r=0 2Cr = 2C0 + 2C1 + 2C2(=

4). 2C0(= 1) represents the number of direct paths (providing DE thus does

not count in here), 2C1(= 2) represent the number of multivariate indirect path

through Y2 or Y3 (providing the first order IE), and 2C2(= 1) represent the number

of multivariate indirect path through Y2 and then Y3 (providing the second order

IE). Thus, the total number of multivariate indirect effect is 3 and Equation 4.7
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represent in this case as

H0 : IE4(2)1 + IE4(3)1 + IE4(3,2)1 = 0 (4.8)

where

IE4(2)1 = B42B21 (4.9)

IE4(3)1 = B43B31 (4.10)

IE4(3,2)1 = B43B32B21 (4.11)

(4.12)

The (i, j)th element of each multivariate IE represent the univariate IE of jth, j =

1, 2, · · · , pk element in Yk on ith, i = 1, 2, · · · , pl element in Yl through all

variables in the intermediate sets of variables. Moreover, the (i, j)th element of each

multivariate IE constitute the (i, j)th elements of the total IE since (i, j)th element

of the TE is sum of the (i, j)th elements in the multivariate IE through all possible

multivariate indirect paths .

4.2.2 Hypothesis Testing Based On The Bootstrap Covariance Estimates

The algorithm to obtain the bootstrap variance of multivariate IEs is modified

from the standard procedure in Chapter 2.3.3. It is based on nonparametric

bootstrap method.

1. Select B independent bootstrap samples w∗1 ,w∗2 , · · · ,w∗B
, each consists of

n data values drawn with replacement from w = x′,y′1,y
′
2, · · · ,y′p, where w

is the original data matrix of n ×
∑j=1

p pj, wi = [xi,y1i
,y2i

, · · · ,ypi
], and

xi = (x1i
, x2i

, · · · , xqi
),y′ki

= (yk1i
, yk2i

, · · · , ykpki
)′, k = 1, 2, · · · , p. (B is in the

range of 1000 - 10000).

2. Fit the MVLPM as specified in Equation 3.1 and evaluate all possible IEs

through all possible vectors on outcome vectors based on definition of indirect

effects as in Chapter 3.3.3. For example, model with four sets variables, all
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possible IEs to calculate are as follows

ˆIE∗4(2)1 = B̂∗
42B̂

∗
21 (4.13)

ˆIE
∗
4(3)1 = B̂∗

43B̂
∗
31 (4.14)

ˆIE
∗
4(3,2)1 = B̂∗

43B̂
∗
32B̂

∗
21 (4.15)

ˆIE
∗
3(2)1 = B̂∗

32B̂
∗
21 (4.16)

ˆIE
∗
41 = ˆIE

∗
4(2)1 + ˆIE

∗
4(3)1 + ˆIE

∗
4(3,2)1 (4.17)

3. Calculate the bootstrap variance-covariance matrix ˆV ar
∗
IEstr

by the sample

variance-covariance matrix of the B bootstrap sample estimates of IEstr.

ˆV ar
∗
IE∗ =

∑b=1
B [ ˆIE

∗
Str(b)− ˆIE

∗
BarStr][ ˆIE

∗
Str(b)− ˆIE

∗
BarStr]

′

B − 1
(4.18)

where ˆIE
∗
Stris a strung out column vector of ˆIE

∗
and ˆIE

∗
BarStr is a strung

out column vector of ˆIE
∗
Bar = B−1

∑b=1
B

ˆIE
∗
(b). For four indirect effect in

Equation 4.17,

ˆV ar
∗
ˆIE

∗
4(2)1

=
B∑

b=1

[ ˆIE
∗
4(2)1Str(b)− ˆIE

∗
4(2)1BarStr]

[ ˆIE
∗
4(2)1Str(b)− ˆIE

∗
4(2)1BarStr]

′/(B − 1) (4.19)

ˆV ar
∗
ˆIE

∗
4(3)1

=
B∑

b=1

[ ˆIE
∗
4(3)1Str(b)− ˆIE

∗
4(3)1BarStr]

[ ˆIE
∗
4(3)1Str(b)− ˆIE

∗
4(3)1BarStr]

′/(B − 1) (4.20)

ˆV ar
∗
ˆIE

∗
4(3,2)1

=
B∑

b=1

[ ˆIE
∗
4(3,2)1Str(b)− ˆIE

∗
4(3,2)1BarStr]

[ ˆIE
∗
4(3,2)1Str(b)− ˆIE

∗
4(3,2)1BarStr]

′/(B − 1) (4.21)

ˆV ar
∗
ˆIE

∗
3(2)1

=
B∑

b=1

[ ˆIE
∗
3(2)1Str(b)− ˆIE

∗
3(2)1BarStr]

[ ˆIE
∗
3(2)1Str(b)− ˆIE

∗
3(2)1BarStr]

′/(B − 1) (4.22)
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ˆV ar
∗
ˆIE

∗
41

=
B∑

b=1

[ ˆIE
∗
41Str(b)− ˆIE

∗
41BarStr]

[ ˆIE
∗
41Str(b)− ˆIE

∗
41BarStr]

′/(B − 1) (4.23)

4. Once, we have obtained the bootstrap variance of each multivariate IE

estimator, then the consistency property of the bootstrap variance estimates

allow us to use a parametric test of each multivariate IE of multiple variables

on multiple outcomes, multiple variables on single outcome, or single variables

on multiple outcome using a Chi-square test. A Chi-square test can be

applied to test two hypotheses in Equation 4.6 and Equation 4.7 based on

asymptotic multivariate normality of OLS estimates of IEs. If we string out

the estimated matrix of a total multivariate IE or an single multivariate IE,

say ˆIElkStr and ˆIEl(Q)kStr, respectively, then we can obtain Chi-square test

statistics using the bootstrap estimates of the variance of the corresponding

IEs. Those are

χ2
IElk

= [ ˆIElkStr −M0]
′( ˆV ar

∗
IElk

)−1[ ˆIElkStr −M0] (4.24)

χ2
IEl(Q)k

= [ ˆIEl(Q)kStr −M0]
′( ˆV ar

∗
IEl(Q)k

)−1[ ˆIEl(Q)kStr −M0] (4.25)

where M0 denote a vector of hypothesized values. For testing that there is no

IE, M0 will be a vector of zeros.

5. Moreover, we can construct the confidence region by analogy. That is we

define the (1− α)% confidence region as follows;

{ω : [ ˆIElkStr − ω]′( ˆV ar
∗
IElk

)−1[ ˆIElkStr − ω] ≤ χ2
1−α,df}

(4.26)

where df is the number of parameters in IElkStr. In this case, df = pl × pk.

For constructing confidence intervals of each element, say ith element, of IElk,

we can apply standard t-method using bootstrap variance estimates of IElk, which
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is (i, i)th element of ˆV ar
∗
IElk

, the Efron’s percentile interval, and the bootstrap t-

interval. Note that the bootstrap standard error estimates substitute for estimated

standard error when constructing bootstrap-t confidence intervals because we use

bootstrap variance estimates for IEs. Since all details of these three methods are

described in Chapter 2.3.4. Application of these three methods is a straightforward

from principals thus, a detailed procedure for constructing each element of an IE

matrix is omitted.

4.2.3 Hypothesis Testing Using limiting P-values Based On Data Depth

As we introduced in Chapter 2.3.7., limiting P-values (LP) can be applied

for simultaneous or multivariate testing of total or single IEs. Consider the

testing a strung out vector of IE, denoted by IEstr in H : IEstr = M0 versus

K : IEstr 6= M0. Let D be the mahalanobis data depth (MhD). Then LP, denoted

by pn is as follows;

pn = Prob{ ˆIE
∗
str : ( ˆIE

∗
str − ˆIEstr) ˆV ar

−1
ˆIEstr

( ˆIE
∗
str − ˆIEstr)

′

≥ ( ˆIEstr −M0) ˆV ar
−1
ˆIEstr

(IEstr −M0)
′} (4.27)

where ˆV ar
−1
ˆIEstr

is the sample covariance matrix of ˆIEstr. This method can be

viewed as the extension of univariate percentile method to the multivariate setting

because it is a way of determine the relative outlyingness of estimates with respect

to the hypothesized value in the multivariate setting. Using the same analogy, the

bootstrap-t can be used to define pn. That is

pn = Prob{ ˆIE
∗
str : ( ˆIE

∗
(b)str − ˆIEstr) ˆV ar

−1
ˆIE

∗
str

(b)( ˆIE
∗
(b)str − ˆIEstr)

≥ ( ˆIE
∗
(b)str −M0)

′ ˆV ar
−1
ˆIEstr

( ˆIE
∗
(b)str −M0)} (4.28)

where ˆIE
∗
(b)str denote estimated IEstr from each bth bootstrap resample and

ˆV ar
−1
ˆIE

∗
str

(b) denotes the estimated covariance matrix of ˆIE
∗
(b)str from each bth

bootstrap resample, using double bootstraping.
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Note that the bootstrap variance estimate, denoted by ˆV ar
∗−1
ˆIE

∗
str

, is substituted

for ˆV ar
−1
ˆIEstr

in Equation 4.27 and Equation 4.28, where ˆV ar
∗−1
ˆIE

∗
str

is the bootstrap

covariance matrix using the total B number of bootstrap resamples because sample

covariance matrix from the original data is not valid in our case because of its

mathematical complication as was mentioned in Chapter 4.2. Details to calculate

LP is shown in Chapter 2.3.7.

4.2.4 The Bootstrap Confidence Region of Multivariate Indirect Effects

The bootstrap confidence region of total or individual multivariate IEs can

be defined using the ordinary percentile method or the bootstrap-t method based

on likelihood or on data depth such as the Mahalanobis distance (MhD) as we

presented in Chapter 2.3.5-2.3.6. The following test and confidence regions and

intervals are followed from ones presented in in Chapter 2.3.5-2.3.6. However, it

should be noted that the bootstrap confidence regions based on the likelihood

are equivalent to the bootstrap confidence regions based on a Mahalanobis data

depth (MhD), due the fact that both are based on a Mahalanobis data distance,

(Θ̂∗ − Θ̂)′V −1/2(Θ̂∗ − Θ̂), from Θ̂.

The bootstrap α × 100% confidence region of an IElk matrix (total or single)

based on the ordinary percentile method, denoted by R̂IElk
is

ˆRIElk
≡ ˆIElk + ˆV ar

1/2
ˆIElk
ω̂IElk

= { ˆIElk + ˆV ar
1/2

ˆIElk
w : w ∈ ω̂IElk

}, (4.29)

where the set ω̂IElk
is chosen so that

Prob{( ˆV ar
−1/2

ˆIElk
( ˆIElk

∗
− ˆIElk)) ∈ ω̂IElk

|F̂} = α. (4.30)

F̂ denotes the empirical distribution from the original data, ˆIElk
∗

denotes a vector

of estimated ˆIElk using each bootstrap resample, and ˆIElk denotes a vector of

estimated IElk from original data. The notation used in Equation 4.29 and 4.30 are

followed from one in Chapter 2.3.5-2.3.6.
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Note that the bootstrap variance estimate, denoted by ˆV ar
∗1/2

ˆIElk
∗ , is substituted

for ˆV ar
1/2

ˆIElk
. Also, ˆV ar

∗−1/2
ˆIElk

∗ is substituted for ˆV ar
−1/2

ˆIElk
in Equation 4.29 and

Equation 4.28, respectively, where V ar∗ ˆIElk
∗· denotes the bootstrap covariance

matrix using the total B number of bootstrap resamples because sample covariance

matrix from the original data is not available in our case as was mentioned in the

previous section.

The bootstrap α × 100% confidence region of IElk based on multivariate

percentile-t method, denoted by R̂0
IElk

is defined as follows;

ˆR0
IElk

≡ ˆIElk + ˆV ar
1/2

ˆIElk
ω̂IElk

= { ˆIElk + ˆV ar
1/2
ˆIE w : w ∈ ω̂0

IElk
}, (4.31)

where ω̂0
IElk

is chosen so that

Prob{(V̂ ∗−1/2
ˆIElk

(b)( ˆIElk
∗
(b)− ˆIElk)) ∈ ω̂0

Ilk
|F̂} = α. (4.32)

where F̂ denote the empirical distribution from the original data , ˆIElk
∗
(b) and

V̂
∗−1/2
ˆIElk

(b) denote a vector of estimated IElk and the bootstrap variance estimates

from each individual bootstrap resample, respectively.

Note that the bootstrap variance estimate, denoted by ˆV ar
∗1/2

ˆIElk
∗ is substituted

for ˆV ar
1/2

ˆIElk
in Equation 5.9, where V ar∗·ˆIE

∗ denote the bootstrap covariance matrix

using the total B number of bootstrap resamples because sample covariance matrix

from the original data is not available in our case. However, the most recommend

confidence region among three is the confidence regions based on the percentile-t

method since it has better oder-correct boundaries although both have converge

rate of O(1/n) according to Hall [26] as was mentioned in Chapter2.3.4 - 2.3.5.

4.2.5 Testing Univariate IE through an Single Univariate Path of Single Variable
on Single Outcome

In this section, we present a testing procedure of univariate indirect effect of

single variables on single outcome through an single univariate path. The single
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univariate path means that it is the only path from one element in a vector of

endogenous variable on one element in a vector of outcome variables only through

one element of each vectors of endogenous variables. For example, from our

motivating example, there is 3 first order individual path from Fat./Cal in Y1 on

CMRI through Y2. They are Fat./Cal. → CAD (Central Adiposity) → CMRI,

Fat./Cal. → CRT (Cortisol) → CMRI, and Fat./Cal. → INF (Inflammation) →

CMRI. These three path produce three first order univariate IE of Fat./Cal on

CMRI, which are represented by β42.11β21.11, β42.12β21.21, and β42.13β21.31, where

βlk.ij denotes the (i, j)th element of Blk in the Equation 3.1. However, these 3

first order univariate indirect effect should be distinguished from the the (1, 1)th

element of the IE4(2)1 because (1, 1)th element of the IE4(2)1 is the sum of those

3 first order univariate indirect effect (i.e., (1, 1)th element of B42B21(IE4(2)1) =

β42.11β21.11 + β42.12β21.21 + β42.13β21.31). Therefore, the test method presented in

this section is different from the multivariate test of IEs presented in the previous

section.

Given the MVLPM and the assumptions in Equation 3.1, we present the

methods for testing of indirect effects that involves testing the products of the

associated path coefficients of one element in a vector of endogenous variable

on one element in a vector of outcome variables. For the MVLPM specified in

Equation 3.1, the null hypothesis that a single path IE of the mth variable of Yk

on the nth variable of Yl is H0 : IEln(Q)km = 0, for a specified Q ∈ 2Alk . This is

equivalent to testing the null hypothesis

H0 :
∏

(k′,l′)∈ln(Q)km

[Bl′k′ ]nl′mk′
= 0 (4.33)

where [Bl′k′ ]nl′mk′
denotes the (nl′ ,mk′)

th element of the direct effect coefficient

matrix, Bl′k′ , corresponding to the direct effect of the mth
k′ variable of a vector of

endogenous variables,Yk′ , on the nth
l′ variable of Yl′ , 2Alk denotes the power set of
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Alk where Alk = {k + 1, k + 2, · · · , l − 1}, Q is any arbitrary element of 2Alk , and

the pair (k′, l′) denotes a pair of adjacent indices in the set l ∪ Q ∪ k, expressed as

l(Q)k. All these notation is followed from Chapter 3.3.1.

The hypothesis in Equation 4.33 can be rewritten using union of t individual

hypotheses of

H0 : ∪(k′,l′)∈ln(Q)km([Bl′k′ ]nl′mk′
= 0) for all (k′, l′) ∈ l(Q)k (4.34)

Thus, the intersection-union test (IUT) [10] can be applied. That is H0 is rejected

at level of α if and only if each individual hypothesis in the union is rejected at

level α. In other words, H0, is rejected at level α if and only if Maximum(ps) <

α, s = 1, 2, · · · , t, where ps is the p-value from sth individual test and t is the

number of individual hypotheses in the union. Each individual hypothesis is

tested using the appropriate test statistics, based on distributional properties of

the estimator of [Bl′k′ ]nl′mk′
, as mentioned earlier [Bl′k′ ]nl′mk′

will be normally

distributed when the model errors are normally distributed and asymptotically

normal without the normal assumption on model errors.

However, the null hypothesis of no IE of one element of Yk on the set of pl

variables in Yl, through an individual indirect path, simultaneously can be written

as the intersection of pl null hypotheses in Equation 4.33. That is

H0 : ∩pl
n=1[∪(k′,l′)∈l(Q)k[Bl′k′ ]nl′mk′

= 0] (4.35)

Therefore, the null hypothesis in equation 4.35 is a union intersection test(UIT) of

intersection union hypotheses. Thus, the null hypnosis is rejected at level of α with

a Bonferroni adjusted level of α/pl for each element of Yl. The H0 in Equation

4.35 is rejected if and only if any individual IUT of the H0 test in Equation 4.33

is rejected at α/pl level. In other words, the null hypothesis in Equation 4.35 is
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rejected if and only if Minimum(ps) < α/pl, s = 1, 2, · · · , pl, where ps denotes the p

value from the sth IUT test of the IE on the sth element in Yl.

Note that the IUT and the UIT for hypothesis testing does not require the

assumption of independent error terms. Independence, however, is required to

partition the TE into sum of direct and indirect effects as in Theorem 3.3.4.



CHAPTER 5
APPLICATION ON THE WESTERN NEW YORK HEALTH STUDY

5.1 The Model Specification

In this chapter, we apply the methods presented in Chapter 3 and 4. A

dataset of disease free females from the Western New York Health Study will be

analyzed that was introduce in Chapter 1 as a motivating example. Our goal is

to investigate the association between heath behaviors and the Cardio-Metabolic

Risk Index (CMRI) defined in Equation 1.1. As we described the motivating

example and figure 1 in Chapter 1.2, the example involved the following assumed

causal relationship among three sets of endogenous variables and one univariate

final outcome: Y1 = a vector of the 5 health behavior indices defined in Equation

1.7-1.12 and reflect daily fat/calories intake (Fat/Cal), lifetime drinking (DNK)

, daily fruits/vegetable consumption (Frt/Veg) , lifetime first and second hand

smoking (SMK), and the log transformed and standardized (using robust location

and scatter parameters using MCD algorithm) total hours of physical activity

during the last week (PhyAct), Y2 = a vector of 3 indices that were defined

in Equation 1.4-1.6 and reflect central adiposity (CAD), cortisol level (CRT),

inflammation level (INF), Y3 = a vector of 2 indices that were defined in Equation

1.2-1.3 and reflect anemia (microcytic: ANM) and blood viscosity (VSC), Y4 =

the Cardio-Metabolic Risk Index (CMRI)that reflect cardiometaboic risk. Health

behavioral Indices were defined by robust principal component analysis (PCA)

(Rousseeuw et al [49]; Croux [13]) from 10 lifestyle variables. Similarly, indices

for central adiposity, cortisol, inflammation, anemia, blood viscosity and CMRI

were created from blood measure found to be associated with the corresponding

variables from both literature review and preliminary data analysis. We used

68
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robust PCA to reduce dimension of data and to eliminate suspected contaminated

observation from the dataset. The details about how these indices were created

were described in Chapter 1.2. Again, no causal ordering assumption within each

vector of variables was assumed. In fact, the suggested model accommodates

correlation among variables in each set: for example, bi-directional correlation

between health behavior variables such as between smoking and drinking is allowed,

as is correlation between anemia level and blood viscosity, as are circular uni-

directional relationship such as that starts from cortisol to central adiposity, from

central adiposity to inflammation, and then from inflammation to central adiposity.

The postulated multivariate path model for this example is as follows:

Y1 = Γ1X + e1

Y2 = B21Y1 + Γ2X + e2

Y3 = B31Y1 + B32Y2 + Γ3X + e3

Y4 = B41Y1 + B42Y2 + B43Y3 + Γ4X + e4

(5.1)

where,

E =



e1

e2

e3

e4


≈ MVN(0,Φ),Φ =



Σ1 0 0 0

0 Σ2 0 0

0 0 Σ3 0

0 0 0 σ4


and where X = (age, total years of education)′.

5.2 Data Cleaning: Robust Detection of Outliers

As we briefly mentioned in Chapter 1.2, we faced potential data contamination

problems. The first effort to deal with this potential problem was made by using

robust PCA. Robust PCA by itself does not detect outliers, but it does reduce

their effect on the resulting indices. Thus, we applied the method suggested by
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Rousseeuw and Van Zomeren (1990) to detect outliers using the robust distance.

That is, we use distances based on Mahalanobis-type data distances computed

from robust multivariate location and scatter estimates, robust distance, using all

variables except a set of exogenous variables, and then, detected outliers based on

these robust distances using the chi-square critical value. Because there are two

exogenous variables (age, years of eduction) in the specified MVLPM, we applied

this method to multivariate residuals from the multivariate linear model adjusting

for 2 exogenous variables. We detected 140 outliers out of 615 disease-free female

data. The critical value χ.02 was used.

5.3 Results

Since the primary purpose of path modeling was to propose a plausible causal

interpretation form the observed data, our primary interest is also to provide

interrelationship among these 4 sets of variables. In addition, we were interested in

examining the indirect association between health behavioral variables and CMRI

through two sets of intermediate variables. Therefore, estimation and testing of the

direct and indirect effects among four sets of variables: a set of health behavioral

variables (Fat/Cal, DNK. Frt/Veg, SMK, PhyAct); an anthropometric variable

(CAD) and a composite blood measure reflecting endogenous steroid levels (CRT)

and inflammation (INF); a set of second composite blood measure that reflect

anemia (ANM) and blood viscosity (VSC); and our final outcome CMRI is of

interest.

5.3.1 Direct Effects

As we described in Chapter 3.1 and 3.2, testing a DE is achieved by using the

standard OLS methods. In other words, the OLS estimation was used to estimate

each DE of one element in the set of endogenous variables on one in a subsequent

set. The OLS estimates of DEs on CMRI, the OLS estimates of DEs on a set of

second composite blood measure that reflect anemia (ANM) and blood viscosity
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(VSC), the OLS estimates of DEs on a set of anthropometric variable (CAD) and

composite blood measure that reflects cortisol level (CRT) and inflammation (INF),

a set of 5 health behavioral variables (Fat/Cal, DNK, Frt/Veg, SMK, PhyAct), and

their standard errors, 95% confidence intervals, and p-values based on t-test from

the fitted MVLPM using the WNYHS female disease free dataset( and p-values)

are presented in Table 5.1, Table 5.2, Table 5.3, and Table 5.4, respectively. The

interpretaiton of these estimates and their p-values follows as usual in regression

model analyses. A Summary of the results of testing DEs among four sets of

variables is as follows:

1. Age had significant DEs on all subsequent sets of variables when controlling

Education.

2. Education(YRSEDUC) had significant DEs on daily fruit and vegetable

consumption (Frt/Veg., Γ̂.12 = −0.19, p = 0.0003) and on life time smoking

(SMK, Γ̂.42 = −0.28, p < 0.0001) when controlling Age.

3. Daily fat and calorie intake (Fat/Cal.) had a significant DE on central

adiposity (CAD,(β̂21.11 = 0.11, p = 0.046) when controlling age, education and

other 4 health behavioral variables.

4. Life time drinking (DNK) had a significant DE on Inflammation

(INF,β̂21.32 = 0.048, p = 0.01) when controlling age, education and other 4

health behavioral variables.

5. Daily fruits and vegetable consumption (Frt/Veg.) had a marginally sig-

nificant DE on central adiposity (CAD, β̂21.13 = −0.096, p = 0.06) when

controlling age, education and other 4 health behavioral variables.

6. Lifetime smoking (SMK) had a significant DE on blood viscosity (VSC,

β̂31.24 = 0.108, p = 0.01)when controlling age, education and other 4 health

behavioral variables.
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7. Physical Activity (PhyAct) had a marginally significant DE on inflammation

(INF, β̂21.35 = −0.075, p = 0.049)when controlling age, education and other 4

health behavioral variables.

8. Central Adiposity (CAD) had significant DEs on blood viscosity (VSC,

β̂32.21 = 0.163, p = 0.0017) when controlling age, education, other 5 health

behavioral variables, cortisol, and inflammation and on CMRI (β̂42.1 = 0.037,

p < 0.0001) when controlling age, education, other 5 health behavioral

variables, cortisol, inflammation, anemia, and blood viscosity.

9. Cortisol (CRT) had significant DEs on blood viscosity (VSC, β̂32.22 = 0.29,

p < 0.0001)when controlling age, education, other 5 health behavioral

variables, central adiposity, and inflammation and on CMRI (β̂42.2 = 0.21,

p < 0.0001) when controlling age, education, other 5 health behavior

variables, central adiposity, inflammation, anemia, and blood viscosity.

10. Inflammation (INF) had significant DEs on anemia (ANM, β̂32.13 = 0.25,

p = 0.007) when controlling age, education, other 5 health behavioral

variables, central adiposity, and inflammation and on blood viscosity (VSC,

β̂32.23 = 0.2, p = 0.3),and on CMRI (β̂42.3 = 0.18, p = 0.0043) when

controlling age, education, other 5 health behavioral variables, central

adiposity, inflammation, anemia, and blood viscosity.

11. Both anemia (ANM, β̂43.1 = −0.09, p = 0.04) and blood viscosity (VSC,

β̂43.2 = 0.18, p < 0.0001) have significant DEs on CMRI when controlling all

other sets of variables in the model.

5.3.2 Indirect Effects

Now, we consider the inference about IE. As we described in Chapter 3.1

and 3.2, IE were parameters defined by the product of DEs along each leg of the

corresponding path. The total IE of a set of 5 health behavior variables (Fat/Cal,

DNK, Frt/Veg, SMK, PhyAct) on a CMRI, denoted as IE41, a 1 × 5 vector which
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is the sum of the individual IEs: the first order IE through Y2 a set comprised of

anthropometric variable (CAD) and composite blood measures that reflect steroid

level (CRT) and inflammation (INF), denoted as IE4(2)1, another first order IE

through Y3, a set of second composite blood measures that reflect anemia (ANM)

and blood viscosity (VSC), denoted as IE4(3)1; and the second order IE though Y3

and then through Y2, denoted by IE4(3,2)1. Also, we defined the total IE of Y2 on

CMRI, denoted by IE42, which is a vector of 1 × 3 and is equivalent to IE4(3)2;

and the total IE of a set of 5 health behavior variable, Y1, on Y3, denoted by IE31,

which is a matrix of 2× 5 and is equivalent to IE3(2)1 for these two case since there

is only one set of intermediate variable, Y2.

Point Estimation

As we described in Chapter.4.1, under the multivariate normality assumption

for ei, i = 1, 2, · · · , 0, the OLS estimators of Bi and associated estimator of σi

were used to estimate matrices of path coefficients, which represent DEs. Then, IEs

are estimated as the product of DEs along each leg of the corresponding path. For

example, IE41, defined by IE4(2)1 + IE4(3)1 + IE4(3,2)1 was estimated as

ˆIE41 = ˆIE421 + ˆIE4(3)1 + ˆIE4(3,2)1, (5.2)

where

ˆIE4(2)1 = B̂42B̂21 (5.3)

ˆIE4(3)1 = B̂43B̂31 (5.4)

ˆIE4(3,2)1 = B̂43B̂32B̂21 (5.5)

(5.6)

and where each B̂ij is the OLS estimates of path coefficients matrix of Yj on Yi in

ith equation of the model defined in Equation 3.1.
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Hypotheses Test and Confidence Regions and Confidence Intervals

Once we we obtained all IEs, the bootstrap implemented inference was applied

to the data set as we described in Chapter 4.2. For the bootstrap percentile

procedure, 10, 000 sample of size 475 were resampled with replacement from the

original data, denoted by B∗
1 , B

∗
1 , · · · , B∗

10,000. From each B∗
i , i = 1, 2, · · · , 10, 000,

we fit the system of multivariate equations as specified in Equation 6.2. Repeating

this procedure 10, 000 provide the the bootstrap distribution of all IEs:IE∗
41,

IE∗
4(3)1, IE

∗
4(2)1, IE

∗
4(3,2)1, IE

∗
31str

, IE∗
42 where IE∗

31str
is a strung vector of IE∗

31. and

obtain corresponding bootstrap covariance matrix estimates. Using those bootstrap

covariance matrix estimates denoted by , we performed multivariate hypotheses

tests of no IEs based on standard chi-square method and based on the ordinary

percentile method using a Mahalanobis data depth that leads the ordinary p-values

and the limiting P-values (LP), respectively, for each test. Detailed results for

multivariate IEs are presented in Table 5.5-5.9.

For the bootstrap-t or the bootstrap percentile methods, 1, 000 samples

of n = 475 were generated from each B∗
i , i = 1, 2, · · · , 10, 000, denoted by

BB∗
1, BB

∗
1, · · · , BB∗

1000. covariance matrix of all IE∗:IE∗
41, IE

∗
4(3)1, IE

∗
4(2)1, IE

∗
4(32)1,

IE∗
31str

, IE∗
42 where IE∗

31str
is a strung vector of IE∗

31. From each Bi, we generate

second layer of bootstrap resamples denoted by BB∗
ij, j = 1, 2, · · · , 1, 000, i =

1, 2, · · · , 10, 000 , we fit the system of multivariate equation as in Equation 6.2.

Then, for each IEs

1. Chboot[i] = ( ˆIE
∗
(i) − ˆIE)′ ˆV ar

∗
IE(i)( ˆIE

∗
(i) − ˆIE) for each IEs where ˆIE

∗
(i)

and ˆV ar
∗
IE(i) denote the IEs and the covariance matrix from BBij, j =

1, 2, · · · , 1, 000, i = 1, 2, · · · , 10, 000 respectively.

2. Calculate the limiting p-value as follow;

pn = 10, 000−1Σ10,000
i=1 I{Chboot[i] > ( ˆIE −M0)

′ ˆV ar
∗
IE( ˆIE −M0)} (5.7)
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where ˆV ar
∗
IE denote bootstrap covariance matrix estimates from the first

layer of bootstrap distribution of Bi, i = 1, 2, · · · , 10, 000

For the bootstrap (1 − α) × 100 percent confidence region based on the

percentile-t, first obtain ˆΩ1−α such that

Prob{( ˆV ar
∗−1/2
ˆIE (i)( ˆIE∗)− ˆIE) ∈ ˆΩIE:(1−α)} = 1− α (5.8)

Then, (1− α)× 100 percent confidence region based on the percentile-t, denoted by

R0
IE is defined by;

R̂0
IE ≡ ˆIE + V̂

∗1/2
ˆIE

Ω̂ ˆIElk
= { ˆIE + V̂

∗1/2
ˆIE

w : w ∈ Ω̂IE:(1−α)}, (5.9)

where ˆV ar
∗
ˆIE denotes bootstrap covariance matrix estimates from the first layer

of bootstrap distribution of Bi, i = 1, 2, · · · , 10, 000 and ˆV ar
∗
ˆIE(i) denote the

covariance matrix from BBij, j = 1, 2, · · · , 1, 000, i = 1, 2, · · · , 10, 000.

For testing each element of IEs, the standard t-test was performed to test each

elements of matrix of IEs using the bootstrap estimates of variances we described

in Chapter 4.2.1. Also, both percentile and bootstrap-t intervals were obtained as

we described in Chapter 4.2.2.

All detailed results based on both multivariate and univariate tests of IE are

shown in Table 5.5 - 5.9. We also draw histograms and qqplots of the bootstrap

distribution of each elements of all IEs used above and those histograms and plots

are shown in Plot 5.1 - Plot 5.33.

The multivariate total indirect effect of health behaviors on CMRI, denoted

by IE41, was significant (p = .025, Table 5-5). Thus, we tested the individual

multivariate IEs that comprise this total; IE4(2)1, IE4(3)1, and IE4(3,2)1. IE4(2)1 was

significant (p=.030, Table 5-5). That is, health behaviors had a significant indirect

effect on CMRI through Y2 (i.e., indices for central adiposity, cortisol level, and

inflammation). Neither IE4(3)1(p = 0.1) nor IE4(3,2)1(p = .188) were significant
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(Table 5-5). Also, health behaviors had no significant multivariate indirect effect

on CMRI through Y3 (i.e, indices for anemia, and blood viscosity)(IE31, p = .13,

Table 5-5), while Y2 had a significant multivariate IEs on CMRI through Y3(IE42,

p = .00005, Table 5-5).

Consequently, follow up tests were performed to test the element of IE41,

IE4(2)1, and IE42. That is to test the indirect effect of each element of IE41,

IE4(2)1, and IE42, respectively. Summary of result for testing the element of the

multivariate IEs are as follows;

1. Daily fat and calorie intake (Fat/Cal) had a significant total indirect effect on

CMRI through ( ˆIE41.1 = .051, p = .02), a significant first order indirect effect

on CMRI though a set of anthropometric variable (CAD), composite blood

measure reflect steroid level (CRT),inflammation (INF)

( ˆIE4(2)1.1 = .0437, p = .02).

2. Daily fruit and vegetable consumption (Frt/Veg.) had a significant total

indirect effect on CMRI ( ˆIE41.3 = −.052, p = .02) and a marginally

significant first order indirect effect on CMRI though a set of anthropometric

variable (CAD) and composite blood measure reflect steroid level (CRT) and

inflammation (INF)( ˆIE4(2)1.3 = −0.035, p = .055).

3. Lifetime smoking (SMK) had a significant total direct effect on CMRI

( ˆIE41.4 = 0.045, p = .02).

4. Central adiposity (CAD) and cortisol had a highly significant first order

indirect effect on CMRI through a set of second composite blood measure

that reflect anemia (ANM) and blood viscosity(VSC)(( ˆIE4(3)2.1 = 0.032,

p = .002), ( ˆIE4(3)2.2 = 0.042, p = .003)), respectively.

In next section, we show results of single path indirect effects where single

path indirect effect represent indirect effect of one element Yk on one element of Yl
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through one element of each set of intermediate variables, which produce a single

path from Yk to Yl(1 ≤ l ≤ p).

Testing Univariate Single Path Indirect Effects

Additional follow up testing procedure to investigate univariate single IE of

any single variable in set of exogenous variables (Age, Education) or in two sets

of endogenous variables (CAD, CRT, INF, and ANM, VSC) on the CMRI can

be performed by using a intersection union test (IUT) as in Equation 4.33. For

example, the estimated first order IE effect of Fat/Cal on CMRI through CAD is

the 0.03, which is the product of DE of Fat/Cal on CAD (0.11) and DE of CAD

on CMRI (0.27). The hypothesis to test, H0: There is no IE of Fat/Cal on CMRI

through CAD can be written as

H0 : [B42]11 × [B21]13 = 0 (5.10)

Note that the first term of the product, [B42]11 indicates the (1, 1) element of

coefficient matrix of set of variables; CAD, CRT, INF, Y2, on CMRI, Y4. That

is, [B42]11, the DE of CAD on CMRI. The second term of the product, [B21]31

represent the (3, 1) element of coefficient matrix of set of 5 health behavioral

indices, Y1, on Y2. That is, [B21]31, the DE of the Fat/Cal on CAD. Therefore, the

null hypothesis in Equation 5.10 can be written as union of individual hypothesis

as follows.

H0 : [B42]11 = 0 ∪ [B21]31 = 0 (5.11)

Thus, the intersection union test (IUT)(Casella and Berger, 1990) can be applied

with rejection rule; H0 is rejected if and only if maximum p-value of each individual

hypothesis is less than .05. Since Maximum (.017, .001) < .05, H0 is rejected.

Therefore, we found a significant univariate single path IE of Fat/Calorie intake

on CMRI through central adiposity (CAD). Testing IE of all antecedent sets of

variables on CMRI were done similarly.
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The list of our findings from the follow-up univariate analysis to test univariate

single path IEs on CMRI using a intersection union test is as follows:

1. Daily fat and calorie intake (Fat/Cal.) had a significant first order IE

( ˆOLS = 0.03, p = 0.02) through central adiposity (CAD) and a significant

second order IE (0.003, p=0.02) through Central Adiposity and then through

Viscosity (VSC).

2. Daily fruits and vegetable consumption (Frt/Veg.) have a marginally sig-

nificant first order IE ( ˆOLS = −0.03, p = 0.06) through Central Adiposity

(CAD) and a significant second order IE ( ˆOLS = −0.003, p = 0.06) though

Central Adiposity and then through Viscosity (VSC).

3. Life time smoking (SMK) has a significant first order IE ( ˆOLS = 0.09, p =

0.01) through viscosity (VSC).

4. Central Adiposity (CAD) had a significant first order IE ( ˆOLS = 0.03, p =

0.002) through viscosity.

5. Cortisol (Gluocodortisoid : CRT) a significant IE ( ˆOLS = 0.03, p = 0.002)

through viscosity (VSC) on CMRI.

Testing IE of any single variable in the set of exogenous variables(Age, Educ)

or in set of endogenous variables (Fat/Cal, DNK, Frt/Veg, SMK, PhyAct), (CAD,

CRT, INF) or (ANM, VSC) on the subsequent set of endogenous variables were

achieved by using a union intersection test (UIT) of intersection union hypotheses

as in Equation 4.35. However, since our final outcome variable is univariate

(CMRI) and there was no significant multivariate IE of Y1 on Y3, application of a

UIT of IUT is not applicable for this application.

Note that each result was obtained when controlling all antecedent sets of

variables as we described in Figure 1. 1. Details of the result above are shown in

Table 5.8. Most of results from our suggested method is consistent to what we

found in literature review
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5.3.3 Discussion

As it is shown in Table 5.5 - 5.9, p-values from chi-square test (reported in the

summary above) and the limiting p-values using the percentile method give the

consistent conclusion for the multivariate test of IEs. Mostly, the limiting P-values

from bootstrap-t method provide more conservative p - values than the ones based

on the other two methods.

The bootstrap distributions of each element of all indirect effect as shown

in Figure A.1-A33 in Appendices A differ little among the bootstrap estimate

and the corresponding OLS estimate. As long as there is no significant bias

and the shape of the bootstrap distribution is close to normal, we found that

studentized-t intervals and bootstrap-t interval agree well such as IE41. However,

the bootstrap distribution of the effect of smoking in IE4(3)1 shows a slight right

skewed distribution with moderate heavy tails in the left. The the percentile CI is

[0.0056, 0.0349] which assumed symmetric distribution of the bootstrap sampling

distribution. Thus, the percentile CI is biased to the left. However, if we looked at

the the bootstrap-t confidence interval [0.0067, 0.0352], we found that the upper

endpoint is a slight more far away from the OLS than the lower endpoint because,

given OLS = 0.0184, the bootstrap confidence interval is (0.0184− 0.0117, 0.0184 +

0.0168). This reflects the slight right skewness of the bootstrap distribution. This

phenomenon also is manifest in the confidence intervals of Fat/Cal. in IE4(3,2)1. We

found the upper endpoint (0.0075) is almost 1.5 times as far away from OLS as the

lower endpoint (0.0045) in bootstrap-t confidence intervals of Fat/Cal in IE4(3,2)1.

Since we found right-skewed bootstrap distribution more often for Fat/Cal., it is

possible that the true sampling distribution of Fat/Cal intake is a right-skewed

distribution.

Note that each element of vectors or matrices of IE of Yk on Yl represents

the sum of indirect effects through all elements of intermediate vectors from one
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element in Yk to one element in Yl. Thus, testing elements of vectors or matrices

of IE allow us to consider possible ‘cancel out’ effects though intermediate set of

variables instead of controlling for them. For example, suppose Frt/Veg might

have positive indirect effect through anemia on CMRI and suppose it might also

have negative indirect effect through viscosity on CMRI. Then indirect effect of

Frt/Veg on CMRI though anemia and viscosity is the sum of two indirect effects;

one through anemia and the other through viscosity. Thus, if their effects are

of opposite directions, then they might be ‘cancel out’ to some degree, and the

indirect effect of Frt/Veg on CMRI though anemia and viscosity may be not

significant as a result. Therefore, these estimators can provide more through

representation of situations where all factors are connected to some degree, like

networks such as biological phenomenon in human body. In the next section, we

present additional follow up test procedure to investigate univariate single path

indirect effects where univariate single path indirect effects represent indirect

effect of one element Yk on one element of Yl through one element of each set of

intermediate variables, which produce a single path from Yk to Yl(1 ≤ k < l ≤ p).
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Table 5–1: OLS estimates of DEs of antecedent variables on CMRI; their stan-
dard errors; 95% confidence intervals; and p-values based on t-tests from the fitted
MVLPM using the WNYHS disease free female dataset (N=475).
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Table 5–2: OLS estimates of DEs of antecedents on Anemia (ANM) and Viscosity
(VSC); their standard errors; 95% confidence intervals; and p-values based on t-test
from the fitted MVLPM using the WNYHS disease free female dataset (N=475).
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Table 5–3: OLS estimates of DEs of antecedents on Central Adiposity (CAD), Cor-
tisol (CRT), and Inflammation (INF) and their standard errors, 95% confidence
intervals, and p-values based on t-test from the fitted MVLPM using the WNYHS
female disease free dataset (N=475).
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Table 5–4: OLS estimates of DEs of antecedents on 5 Health Behavioral Variables
(Fat/Cal, DNK, Frt/Veg, SMK, PhyAct); their standard errors; 95% confidence
intervals; and p-values based on t-test from the fitted MVLPM using the WNYHS
disease free female dataset (N=475).



85

Table 5–5: OLS-based estimates of multivariate and univariate IEs of 5 Health
Behaviors (Fat/Cal, DNK, Frt/Veg, SMK, PhyAct) on CMRI; 95% confidence in-
tervals; and p-values from the fitted MVLPM using the WNYHS disease free female
dataset (N=475). p-values with † were based on the multivariate χ2tests and those
with ‡ were based on the univariate t-tests (bootstrap variance estimates were used
for confidence intervals and multivariate and univariate tests).
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Table 5–6: OLS-based estimates of multivariate and univariate IEs of 5 Health
Behavioral Variables (Fat/Cal, DNK, Frt/Veg, SMK, PhyAct) on a set of a set of
second composite blood measure that reflect anemia (ANM) and blood viscosity
(VSC); 95% confidence intervals; and p-values from the fitted MVLPM using the
WNYHS disease free female dataset (N=475). p-values with † were based on the
multivariate χ2test and those with ‡ are based on the univariate t-tests (bootstrap
variance estimates were used for confidence intervals and multivariate and univari-
ate tests).
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Table 5–7: OLS-based estimates of multivariate and univariate IEs of a set of an-
thropometric variable (CAD) and composite blood measure reflect steroid level
(CRT) and inflammation (INF) on CMRI and blood viscosity (VSC); 95% confi-
dence intervals; and p-values from the fitted MVLPM using the WNYHS disease
free female dataset (N=475): p-values with † were based on the multivariate χ2test
and those with ‡ were based on the univariate t-test (bootstrap variance estimates
were used for confidence intervals and multivariate and univariate tests).
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Table 5–8: Studentized confidence intervals (denoted by Std), percentile intervals
(denoted by Pct) and bootstrap-t (Boot-t) of each element of all IEs of 5 health be-
havioral variables on CMRI (N=475). P-values with † represent the p-values from
multivariate chi-square test, limiting p-values based on a Mahalanobis data depth
and the bootstrap-t method, respectively.
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Table 5–9: The first table presents studentized confidence intervals, percentile in-
tervals and bootstrap-t intervals on of each elements of IE of the 5 health behaviors
on Anemia and Viscosity (N=475). The second table presents 3 different kinds of
intervals for IE of central aiposity, cortisol and inflammation on CMRI. P-values
with † are the p-values from multivariate chi-square test, limiting P-values based on
a Mahalanobis data depth, and the bootstrap-t method, respectively
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Table 5–10: OLS estimates of the univariate single path IEs and p-values from the
fitted MVLPM using the WNYHS disease free female dataset (N=475). Variables
in rows and columns represent the independent variables and dependent variables.
For example, the DE of Frt/Veg. on CAD can be found in the cross section of
Frt/Veg row and CAD column, which is .11, p = .017 and then in order to find
out DE of CAD on other subsequent variables, go further down until you meet the
CAD row in the CAD column from the your first cross section. Then when you
meet the CAD row, then estimate of right side of intersection of CAD row and
CAD column represent the DE of CAD on the subsequent sets of variables. (DE of
CAD on CMRI is .27 p =< .0001, for example) Thus, the univariate single indi-
rect effect of Frt/Veg on CMRI through CAD is .011 × .27 = .03 and its p value is
max(.017, < .0001) = .017. OLS estimates with bold case represent the significant
ones (p < .05)



CHAPTER 6
DISCUSSION AND FUTURE WORK

6.1 Discussion

This dissertation has extended the methodology of the traditional univariate

path models into the multivariate frame work, called the multivariate linear

path model. In multivariate linear path models, intermediate variables and path

coefficients are defined as vectors and matrices respectively. This allows the use

of path analytic methods in situations where not all random variables can be

causally ordered. Thus, the proposed model allows more frequent applications of

path modeling. Studies where a strict causal ordering is not reasonable assumption,

such as health science and epidemiology research projects. We have defined

direct, indirect, and total effects as derivatives of vector valued and multiply

nested mean functions using Jocobians. The Calculus of Coefficients (COC) for

multivariate path models was derived. The multivariate COC extends the well-

known COC for the classical univariate path model to the multivariate case. The

multivariate COC results in a partitioning of the matrix of total effects into the

sum of the matrix of direct effects and matrices of indirect effects through all

intermediate vectors of variables. The main purpose of path modeling is to provide

the causal interpretation of the observed data; that is , an interpretation under the

assumption of causally ordered vectors. This can be achieved by estimating and

testing direct and indirect effects of sets of endogenous variables on subsequent

sets of variables in causal chain. Direct and indirect effects among sets of random

variables can be estimated in a sequence of multivariate linear regression equations,

one for each set of endogenous variables. Estimation of direct effects can be

achieved by estimating matrices of regression coefficients in the sequence of

91



92

multivariate regression equations, where each equation involves usual multivariate

regression assumptions, linearity and normality with additional assumptions that

errors in each equations are mutually independent and independent of the sets

of exogenous variables. This last assumptions allow vectors of random variables

defined as dependent variables to be used as sets of independent variables in the

subsequent multivariate regression equations in the system of equations. For these

reasons, the methodology for estimating and interpreting parameters of the system

of equations follows that for usual multivariate regression models. Thus, under

these assumptions, OLS estimators can be used to estimate direct effect matrices.

In the classical univariate path model, direct effects are defined as regression

coefficients in each equation in the system of equations and indirect effects are

defined as the products of direct effects related to the corresponding path. The

univariate COC tell us that sums of these direct and indirect effects are equal to

the total effects in the classical univariate path model. We have extended these

results to the multivariate model by defining direct, indirect, and total effects as

derivatives of the vector valued and multiply nested conditional mean function

using Jocobians and have defined the multivariate COC using these definitions.

We have proposed that the bootstrap method be implemented for the multi-

variate testing and construction of confidence regions for matrices of multivariate

indirect effects. This is due to the fact that matrices of multivariate total indirect

effects consist of sum of matrices of all multivariate individual effects and that ma-

trices of multivariate individual indirect effects are composed of product of direct

effects. The usual delta method is merely efficients due to the its mathematical

complications. Also the variance estimates based on the delta method tend to

underestimate the true variance because it is based on a lower bound (i.e., it is

based on the first term of a Taylor expansion). Therefore, the bootstrap method is

preferred for inference in our multivariate model.
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The limiting p values based on a Mahalanobis data depth and the bootstrap

method proposed by Liu and Singh [44] have been used for multivariate testing

and construction of confidence regions for matrices of multivariate indirect effects.

However, it is found that bootstrap confidence regions based on a Mahalanobis

data depthMhD are equivalent to the bootstrap confidence regions based on

the likelihood proposed by Hall [26]. The reason is that both are based on a

Mahalanobis data distance, (Θ̂∗ − Θ̂)′V −1/2(Θ̂∗ − Θ̂), from Θ̂. Hall suggested that

the bootstrap-t percentile method is preferred to the ordinary percentile method

because it has better order-correct boundaries even though both have converge

rate of O(1/n) [26]. Method for defining confidence regions based on data depth is

more general than likelihood method because we can use other data depths such

as tukey’s depth which was proposed to provide more accurate results according to

Yeh et.al [57].

For univariate test and confidence intervals for each element of matrices of

total multivariate indirect effects, we have proposed studentized t, percentile, and

bootstrap-t methods. From the application to the Western New York Health Study

disease free female data, we found that bootstrap-t confidence intervals usually

accommodate better the corresponding bootstrap distribution, which converges

to the true sampling distribution as sample size and the number of resamped

samples increase. Since our proposed model is favorable to data of relatively large

sample size such as population or community based data like in our motivating

example, bootstrap inference would provide reasonable results on the condition

that the number of parameters are not large relative to the sample size. Our

proposed methods might not be recommended for data of relatively small sample

size and a relatively large numbers of parameters. The other limitation is that

our models can be applied to situations where all sets of endogenous variables

are continuous because it requires samples from a population of the multivariate
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normal distribution. Since the proposed model assumes independent error terms

across equations, analogous to the assumption of independent errors in the classical

univariate model, the OLS estimates leads to biased and inconsistent estimator if

the error terms are correlated.

Epidemiology and social science studies usually involves non-randomized ob-

servational data with a large numbers of variables to be considered simultaneously.

However, our ability to understand and interpret the interrelationships among large

numbers of variables from observational data is quite limited without some degree

of subjective judgment ,including that involved in specification of direction of rela-

tionships among variables and the assumption of error terms. These assumptions

may never be justified without any experimental studies. Hence, interpretation

of observational studies may never be as clear-cut as those in the experimental

studies. According to Li [42], what is required of path modeling is that its results

must be consistent throughout the structural and compatible with the observed

data on all variables involved in the structure. Our application of the proposed

model have shown that we have interpretable results that are consistent to what we

have found from the literatures in cardiometabolic disease related areas.

6.2 Future work

In closing this dissertation, we present some ideas for future research. The

following will be the areas of primary focus of our future research.

Since we have used the bootstrap method for inference of the proposed model,

it would worth while to perform simulation studies to access the optimal sample

size to get desired power. In addition, since we have used only one type of data

depth, Mahalanobis data depth, for the multivariate testing of indirect effects, a

natural next step will be exploring another types of data depth, such as Tukey’s

depth, and applying it to our implemented bootstrap method. The Tukey’s data

depth is defined as follows:
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Tukey’s depth(Tukey 1975). The Tukey’s depth of a point t relative to a

k − dimensional data set L = {ti = (ti1, ti2, · · · , tik); i = 1, 2, · · · , n} is the smallest

number of data points in a closed halfspace with boundary through t. It can be

written as

TD(t, L) = min
||u||

]{i : uT ti ≤ uT t} (6.1)

where u ranges over all vectors in Rk, with ||u|| = 1. According to Zuo and Ser-

fling [59], the Tukey’s data depth appears to be the most attractive among all

the competitors. Until 1999, Tukey’s data depth could only be exactly computed

for only bivariate and three-dimensional data (Rousseeuw and Ruts, 1998) with

inefficient computing time. However, Recently, Struyf and Rousseeuw provide an

algorithm that computes an approximation for the Tukey’s depth in every dimen-

sion that works with a subset of s directions of u with more efficient computing

time. Although using Tukey’s depth require much more computing time than

using the Mahalanobis data depth, it would be worth while to apply a Tukey’s

depth in our bootstrap method of inference to have more accurate results from the

multivariate testing procedure. The Tukey’s also can be applied to robust methods,

which is second step of our future research following the next paragraph.

Since our proposed method are appealing for data of large sample size, such as

a population or a community based data , it usually involves some degree of data

contamination problems as we faced in our motivating example. In the application

presented in this dissertation, we excluded observations that are detected as

outliers using robust distance suggested by Rousseeuw and Driessen [49] and

we lost more than 20% of the data. Therefore, a natural next step, following of

this dissertation is to robustfy our method by adopting some of the commonly

used robust methods such as S estimation ,introduced by Rousseeuw [49], MM

estimation, introduced by Yohai [58], and γ scale estimation, introduced by

Ben [6] recently for robust etimation of matrices of path coefficients. As we
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briefly described in previsous paragraph, Tukey’s data depth can be applied in

the context of the robust method. In the procedure of outliers detection in the

application of the proposed models, we have used the MCD (Minimum Covariance

Determinant) algorithm proposed by Rousseeuw and Driessen [49], which is based

on the Mahalanobis data distance. However, Tukey’s data depth outperforms

the Mahalanobis’ data depth because the latter has lack of ability to capture the

asymmetry of the data according to Battista [5]. Thus, if we had used Tukey’s

data depth instead of the Mahalanobis’ data depth, we might have had better

outlier detection by accommodating skewed data distributions. Robustfying our

estimation method using various estimation methods including Tukey’s data depth

and comparing the different method in our proposed models will be second focus of

our future work.

Third topics of our future research will be the Multivariate Linear Path Model

(MVLPM) embedded in the Multiple Indicator and Multiple Causes (MIMIC)

Model. This idea also has been motivated by the Western New York Health Study

(WNYHS). Since insulin resistance has been considered as one of major underlying

causes of early stage of cardio-metabolic disease such as diabetes or cardiovascular

disease (according to the American Diabetes Association) and our main outcome

variables are risk factor of cardiovascular disease, we can use insulin resistance level

as a latent variables between sets of blood composites which reflect anemia and

blood viscosity in our postulated model as in Figure 6.1.
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Figure 6–1: the Multivariate Linear Path Model (MVLPM) embedded in the Multi-
ple Indicator and Multiple Causes (MIMIC) Model using the WNYHS

The postulated multivariate Linear Path Model (MVLPM) embedded in the

Multiple Indicators and Multiple Causes (MIMIC) Model is defined as follows:

Y1 = Γ1X + e1

Y2 = B21Y1 + Γ2X + e2

Y3 = B31Y1 + B32Y2 + Γ3X + e3

z = Bz1Y1 + Bz2Y2 + Bz3Y3 + Γ3X + u

Y4 = B41Y1 + B42Y2 + B43Y3 + Γ4X + e4

(6.2)
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where

E =



e1

e2

e3

u

e4


≈ MVN(0,Φ),Φ =



Σ1 0 0 0 0

0 Σ2 0 0 0

0 0 Σ3 0 0

0 0 0 u 0

0 0 0 0 Σ4


where

X = (age, total years of education)′

z = unobserved insulin resistance level

Y4 = (Triglycerides, Glucose, HDL cholesterol, LDL cholesterol

,Diastolic blood pressure, Systolic blood pressure)′ (6.3)

From this model, we can estimate and test direct and indirect effects of all sets of

health behavior variables on insulin resistance level. Moreover, we can estimate

direct and indirect effects of sets or each elements of health behavior variables on

6 cardiometabolic risk factors through insulin resistance level. Thus, this approach

will describe how insulin resistance level plays a role as a link between sets of

antecedents variables and cardiometabolic risk factors.



APPENDIX A
Histograms and Normal Plots of the Bootstrap Distributions
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Figure A–1: Bootstrap distribution for IE41 of the Daily Fat and Calorie intakes
on CMRI from the 10,000 resampling and the corresponding normal quantiles plot.
The solid line in the histogram marks the OLS and the solid line in the normal plot
marks the normal distribution.
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Figure A–2: Bootstrap distribution for IE41 of the Lifetime Drinking on CMRI
from the 10,000 resampling and the corresponding normal quantiles plot. The
dashed line in the histogram marks the OLS and the solid line in the normal plot
marks the normal distribution.
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Figure A–3: Bootstrap distribution for IE41 of the Daily Fruits and Vegetable
consumption on CMRI from the 10,000 resampling and the corresponding normal
quantiles plot. The solid line in the histogram marks the OLS from the original
data and the solid line in the normal plot marks the normal distribution.
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Figure A–4: Bootstrap distribution for IE41 of the Lifetime Smoking on CMRI
from the 10,000 resampling and the corresponding normal quantiles plot. The solid
line in the histogram marks the OLS from the original data and the solid line in
the normal plot marks the normal distribution.
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Figure A–5: Bootstrap distribution for IE41 of the Total Hours of Physical Activi-
ties per week on CMRI from the 10,000 resampling and the corresponding normal
quantiles plot. The solid line in the histogram marks the OLS from the original
data and the solid line in the normal plot marks the normal distribution.
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Figure A–6: Bootstrap distribution for IE421 of the Daily Fat and Calorie intakes
on CMRI from the 10,000 resampling and the corresponding normal quantiles plot.
The solid line in the histogram marks the OLS from the original data and the solid
line in the normal plot marks the normal distribution.
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Figure A–7: Bootstrap distribution for IE421 of the Lifetime Drinking on CMRI
from the 10,000 resampling and the corresponding normal quantiles plot. The solid
line in the histogram marks the OLS from the original data and the solid line in
the normal plot marks the normal distribution.

-0.1125 -0.0925 -0.0725 -0.0525 -0.0325 -0.0125 0.0075 0.0275

0

2

4

6

8

10

12

P
e
r
c
e
n
t

Frt/Veg.

0.001 0.1 1 5 10 25 50 75 90 95 99 99.9 99.999

-1.250E-01

-1.000E-01

-7.500E-02

-5.000E-02

-2.500E-02

0

2.500E-02

5.000E-02

F
r
t
/
V
e
g
.

Normal Percentiles

Figure A–8: Bootstrap distribution for IE421 of the Daily Fruits and Vegetable
consumption on CMRI from the 10,000 resampling and the corresponding normal
quantiles plot. The solid line in the histogram marks the OLS from the original
data and the solid line in the normal plot marks the normal distribution.
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Figure A–9: Bootstrap distribution for IE421 of the Lifetime Smoking on CMRI
from the 10,000 resampling and the corresponding normal quantiles plot. The solid
line in the histogram marks the OLS from the original data and the solid line in
the normal plot marks the normal distribution.
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Figure A–10: Bootstrap distribution for IE421 of the Total Hours of Physical Activ-
ities per week on CMRI from the 10,000 resampling and the corresponding normal
quantiles plot. The solid line in the histogram marks the OLS from the original
data and the solid line in the normal plot marks the normal distribution.
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Figure A–11: Bootstrap distribution for IE431 of the Daily Fat and Calorie intakes
on CMRI from the 10,000 resampling and the corresponding normal quantiles plot.
The solid line in the histogram marks the OLS from the original data and the solid
line in the normal plot marks the normal distribution.
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Figure A–12: Bootstrap distribution for IE431 of the Lifetime Drinking on CMRI
from the 10,000 resampling and the corresponding normal quantiles plot. The solid
line in the histogram marks the OLS from the original data and the solid line in
the normal plot marks the normal distribution.

-0.055 -0.045 -0.035 -0.025 -0.015 -0.005 0.005 0.015 0.025

0

2

4

6

8

10

12

P
e
r
c
e
n
t

Frt/Veg.

0.001 0.1 1 5 10 25 50 75 90 95 99 99.9 99.999

-6.000E-02

-4.000E-02

-2.000E-02

0

2.0000E-02

4.0000E-02

F
r
t
/
V
e
g
.

Normal Percentiles

Figure A–13: Bootstrap distribution for IE431 of the Daily Fruits and Vegetable
consumption on CMRI from the 10,000 resampling and the corresponding normal
quantiles plot. The solid line in the histogram marks the OLS from the original
data and the solid line in the normal plot marks the normal distribution.
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Figure A–14: Bootstrap distribution for IE431 of the Lifetime Smoking on CMRI
from the 10,000 resampling and the corresponding normal quantiles plot. The solid
line in the histogram marks the OLS from the original data and the solid line in
the normal plot marks the normal distribution.
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Figure A–15: Bootstrap distribution for IE431 of the Total Hours of Physical Activ-
ities per week on CMRI from the 10,000 resampling and the corresponding normal
quantiles plot. The solid line in the histogram marks the OLS from the original
data and the solid line in the normal plot marks the normal distribution.
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Figure A–16: Bootstrap distribution for IE4321 of the Daily Fat and Calorie intakes
on CMRI from the 10,000 resampling and the corresponding normal quantiles plot.
The solid line in the histogram marks the OLS from the original data and the solid
line in the normal plot marks the normal distribution.
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Figure A–17: Bootstrap distribution for IE4321 of the Lifetime Drinking on CMRI
from the 10,000 resampling and the corresponding normal quantiles plot. The solid
line in the histogram marks the OLS from the original data and the solid line in
the normal plot marks the normal distribution.
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Figure A–18: Bootstrap distribution for IE4321 of the Daily Fruits and Vegetable
consumption on CMRI from the 10,000 resampling and the corresponding normal
quantiles plot. The solid line in the histogram marks the OLS from the original
data and the solid line in the normal plot marks the normal distribution.
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Figure A–19: Bootstrap distribution for IE4321 of the Lifetime Smoking on CMRI
from the 10,000 resampling and the corresponding normal quantiles plot. The solid
line in the histogram marks the OLS from the original data and the solid line in
the normal plot marks the normal distribution.
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Figure A–20: Bootstrap distribution for IE4321 of Physical Activity per week on
CMRI from the 10,000 resampling and the corresponding normal quantiles plot.
The solid line in the histogram marks the OLS from the original data and the solid
line in the normal plot marks the normal distribution.
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Figure A–21: Bootstrap distribution for IE42 of the Central Adiposity on CMRI
from the 10,000 resampling and the corresponding normal quantiles plot. The solid
line in the histogram marks the OLS from the original data and the solid line in
the normal plot marks the normal distribution.
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Figure A–22: Bootstrap distribution for IE42 of the Cortisol CMRI from the 10,000
resampling and the corresponding normal quantiles plot. The solid line in the his-
togram marks the OLS from the original data and the solid line in the normal plot
marks the normal distribution.
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Figure A–23: Bootstrap distribution for IE42 of the Inflammation on CMRI from
the 10,000 resampling and the corresponding normal quantiles plot. The solid line
in the histogram marks the OLS from the original data and the solid line in the
normal plot marks the normal distribution.
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Figure A–24: Bootstrap distribution for IE31 of the Daily Fat and Calorie intakes
Anemia from the 10,000 resampling and the corresponding normal quantiles plot.
The solid line in the histogram marks the OLS from the original data and the solid
line in the normal plot marks the normal distribution.
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Figure A–25: Bootstrap distribution for IE31 of the Lifetime Drinking Anemia from
the 10,000 resampling and the corresponding normal quantiles plot. The solid line
in the histogram marks the OLS from the original data and the solid line in the
normal plot marks the normal distribution.
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Figure A–26: Bootstrap distribution for IE31 of the Daily Fruits and Vegetable
consumption Anemia from the 10,000 resampling and the corresponding normal
quantiles plot. The solid line in the histogram marks the OLS from the original
data and the solid line in the normal plot marks the normal distribution.
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Figure A–27: Bootstrap distribution for IE31 of the Lifetime Smoking Anemia from
the 10,000 resampling and the corresponding normal quantiles plot. The solid line
in the histogram marks the OLS from the original data and the solid line in the
normal plot marks the normal distribution.
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Figure A–28: Bootstrap distribution for IE31 of the Total Hours of Physical Activ-
ities per week Anemia from the 10,000 resampling and the corresponding normal
quantiles plot. The solid line in the histogram marks the OLS from the original
data and the solid line in the normal plot marks the normal distribution.

-0.02 -0.005 0.01 0.025 0.04 0.055 0.07 0.085 0.1 0.115

0

2

4

6

8

10

12

14

P
e
r
c
e
n
t

Fat/Cal.

0.001 0.1 1 5 10 25 50 75 90 95 99 99.9 99.99

-0.025

0

0.025

0.050

0.075

0.100

0.125

0.150

F
a
t
/
C
a
l
.

Normal Percentiles

Figure A–29: Bootstrap distribution for IE31 of the Daily Fat and Calorie intakes
on Anemia from the 10,000 resampling and the corresponding normal quantiles
plot. The solid line in the histogram marks the OLS from the original data and the
solid line in the normal plot marks the normal distribution.
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Figure A–30: Bootstrap distribution for IE31 of the Lifetime Drinking from Anemia
the 10,000 resampling and the corresponding normal quantiles plot. The solid line
in the histogram marks the OLS from the original data and the solid line in the
normal plot marks the normal distribution.
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Figure A–31: Bootstrap distribution for IE31 of the Daily Fruits and Vegetable
consumption Anemia from the 10,000 resampling and the corresponding normal
quantiles plot. The solid line in the histogram marks the OLS from the original
data and the solid line in the normal plot marks the normal distribution.
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Figure A–32: Bootstrap distribution for IE31 of the Lifetime Smoking Anemia from
the 10,000 resampling and the corresponding normal quantiles plot. The solid line
in the histogram marks the OLS from the original data and the solid line in the
normal plot marks the normal distribution.
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Figure A–33: Bootstrap distribution for IE31 of the Total Hours of Physical Activ-
ities per week Anemia from the 10,000 resampling and the corresponding normal
quantiles plot. The solid line in the histogram marks the OLS from the original
data and the solid line in the normal plot marks the normal distribution.
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